Braidio: An Integrated Active-Passive Radio for Mobile Devices with Asymmetric Energy Budgets

Pan Hu, Pengyu Zhang, Mohammad Rostami, Deepak Ganesan University of Massachusetts Amherst

Variability in battery capacity

Three orders of magnitude variation in battery capacity

Asymmetric battery lifetime

Devices with smaller batteries deplete far ahead of those with larger batteries

Symmetric power consumption

Can we design a power proportional radio?

Can we create a radio which consumes power proportional to battery size?

Diversity of radio architectures

Active: Symmetric Radio

WiFi/ Bluetooth

Backscatter: Low power transmitter

RFID Tag

Passive: Low power receiver

AM receiver

Diversity of radio architectures

Active: Symmetric Radio

WiFi/ Bluetooth

Backscatter: Low power transmitter

RFID Tag

Passive: Low power receiver

AM receiver

Symmetric active radio architecture

Active RX

Similar power consumption at TX and RX

Diversity of radio architectures

Active: Symmetric Radio

WiFi/ Bluetooth

Backscatter: Low power transmitter

RFID Tag

Passive: Low power receiver

AM receiver

Backscatter reader architecture

Backscatter transmitter

Backscatter reader architecture

Backscatter reader

Backscatter transmitter

Much less power at TX but reduced range

Diversity of radio architectures

Active: Symmetric Radio

WiFi/ Bluetooth

Backscatter: Low power transmitter

RFID Tag

Passive: Low power receiver

AM receiver

CICS@UMass Amherst

Passive receiver architecture

Much less power at RX but reduced range

CICS@UMass Amherst

Radio type	ТХ	RX	TX/RX
Active	20mW	20mW	1
Backscatter	20mW	0.02mW	1000:1
Passive	0.02mW	20mW	1:1000

Can we take advantage of these architectures?

Architecture of radios

Achievable region

Available radio

Radio type TX/RX
Active 1

Challenges in combining three modes

Why is a Backscatter reader power hungry?

Reducing power of Backscatter reader

Antenna diversity

Bradio Backscatter RX: Design Tradeoffs

What if the Braidio backscatter mode fails?

Braidio multiplexes across modes based on SNR of each link and battery levels to achieve desired power ratio.

Implementation of Braidio

Top Layer

Bottom Layer

Braidio: Achievable power ratios

Braidio: Operating distance

Braidio: Performance gain over active radio

Nike Fuel Band -1.43 2.45 3.51 6.63 24.7 39.1 251 49.1 276 350 Pebble Watch 1.43 1.76 2.97 9.98 15.5 19.4 97.7 -2.57 136 107 Apple Watch -3.68 1.85 1.43 2.11 6.51 10.0 12.4 61.6 67.9 85.8 3.12 2.21 1.43 3.45 5.12 6.29 29.8 32.8 41.4 Pivothead -6.97 iphone 65 -25.9 10.4 6.8 8.64 10.7-300x improvement Receiver iPhone 6 Plus 16.3 10 41.0 5.65 6.99when fitness band Nexus 6P transmits to laptop 4.61 5.68--51.6 20.4 13 Surface Book 102 64 31.3 8.29 5.44 4.46 1.43 1.43 1.63-263 MacBook Pro 13 112 71.3 34.4 9.07 5.94 4.85 1.50 1.43 1.54-290 MacBook Pro 15 368 143 90.1 43.4 11.3 7.34 5.96 1.71 1.62 1.43-MacBook Pro 13 MacBook Pro 15 Pebble Watch Nike Fuel Band Apple Watch iPhone 6 Plus Surface Book iphone 65 Nexus 6P Pivothead Transmitter

Braidio: A novel power-proportional radio that can deal with asymmetric energy budgets on mobile devices.

Thank you

Braidio: A novel power-proportional radio that can deal with asymmetric energy budgets on mobile devices.

Thank you

Backup

Backup

