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Figure 1: The iShadow platform prototype.

Abstract

Continuous, real-time tracking of eye gaze is valuable in a vari-
ety of scenarios including hands-free interaction with the physical
world, detection of unsafe behaviors, leveraging visual context for
advertising, life logging, and others. While eye tracking is com-
monly used in clinical trials and user studies, it has not bridged the
gap to everyday consumer use. The challenge is that a real-time eye
tracker is a power-hungry and computation-intensive device which
requires continuous sensing of the eye using an imager running
at many tens of frames per second, and continuous processing of
the image stream using sophisticated gaze estimation algorithms.
Our key contribution is the design of an eye tracker that dramati-
cally reduces the sensing and computation needs for eye tracking,
thereby achieving orders of magnitude reductions in power con-
sumption and form-factor. The key idea is that eye images are
extremely redundant, therefore we can estimate gaze by using a
small subset of carefully chosen pixels per frame. We use a sparse
pixel-based gaze estimation algorithm that is a multi-layer neural
network learned using a state-of-the-art sparsity-inducing regular-
ization function which minimizes the gaze prediction error while
simultaneously minimizing the number of pixels used. Our results
show that we can operate at roughly 70mW of power, while con-
tinuously estimating eye gaze at the rate of 30 Hz with errors of
roughly 4 degrees.
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1 Introduction

We present iShadow, a novel ultra-low-power ”computational eye-
glass” system for performing eye tracking-related research in the
wild. Many existing eye tracking systems are designed for use in a
controlled testing environment [Hansen and Ji 2010]. These tools
provide extremely high accuracy and image resolution, at the cost
of requiring subjects to be brought into a controlled environment for
collecting data. The results generated by researchers in the growing
field of mobile-health-related research, or mHealth, clearly demon-
strate the benefits of collecting physiological and environmental
data on subjects in the wild. Given the well-known research op-
portunities afforded by eye and gaze tracking, it is very apparent
that leveraging mHealth techniques to facilitate collecting of gaze
data on subjects outside of a lab environment would open up new
avenues of research that were previously infeasible.

There are already tools in existence that are designed to meet this
need, however, existing tools suffer from several limitations. The
largest of these issues are mobility and obtrusiveness. Current mo-
bile eye trackers require the use of auxiliary equipment for data
transmission or recording, for energy supply, and for control. In
addition, even with these extended modules they can only run for
a few hours at a time [Tobii 2013]. These tools represent a huge
step forward in eye tracking for mHealth, since they bring eye re-
search out of the lab and into the wild, but their limitations will con-
tinue to restrict researchers. Thus, we have designed a mobile eye
tracking tool with an emphasis on ultra-low power consumption.
In addition, the iShadow platform is designed to be programmable,
providing computational resources that enable real-time processing
and fusion of sensor data. This is, to our knowledge, a novel feature
in the space of mobile eye tracking tools.

The key feature that enables our system design is the use low-
power embedded imagers that provide a random-access pixel in-
terface [Stonyman 2013]. This allows the processor to read the
values of any individual pixel, which facilitates subsampling and
the use of adaptive sampling methods. Our platform also includes
a number of additional sensors for gathering data on personal and
environmental context. Together, all of these features enable the
iShadow platform to provide a unique power-accuracy tradeoff so
that the most energy and computation can be used for collecting
and processing more data during the most relevant periods of time.
This can be accomplished using adaptive sampling methods and
data triggering. In addition, iShadow operates strictly in the visi-
ble spectrum using passive illumination, removing the need for a
power-intensive light source of any kind.

2 Design Overview

In this section, we provide a brief overview of the working of
iShadow. The first step in using iShadow is calibration, where a
user looks at a few points on a monitor while keeping their head
relatively steady, in a manner similar to commercial eye trackers.
During this calibration phase, iShadow captures a full image stream
from the eye-facing and outward-facing imager, and downloads this
data to a computer either via USB or Bluetooth.

The second step is the neural network based sparse pixel selection
algorithm. In this stage, the learner divides the calibration dataset
into training and testing sets, and sweeps through the regularization
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parameters to learn a set of models that correspond to different gaze
prediction accuracies. Each model specifies both the set of pixels
that need to be acquired and the weights on the pixels to use for
the activation function that predicts gaze co-ordinates. Depending
on the power constraints of the platform and the accuracy needs of
the application, the appropriate model can be downloaded to the
iShadow platform for real-time operation.

The third step is the run-time execution of the model that is down-
loaded onto the iShadow platform. The model is stored in an SD
card when it is too large for the available memory, and the run-
time system acquires the appropriate pixel set and executes the non-
linear weighted sum to predict gaze co-ordinates in real time.

3 Performance

To test the effectiveness of iShadow at accurately and efficiently
predicting the wearer’s gaze location, we collected sample data
from ten different subjects. We generated at least five minutes of
labeled data for each subject in full-image-capture mode, and the
resulting dataset includes at least 3000 images per user. We used
this data to perform experiments testing iShadow’s effectiveness.

Power-Accuracy Tradeoff. One of the key benefits of our algo-
rithmic framework is that it is able to provide a variety of models
that offer different tradeoffs between the overall complexity of the
model (i.e. number of pixels sampled, and number of weights for
computation) and the accuracy of the model (i.e. the precision in
degrees). This tradeoff is enabled by using different choices of the
regularization parameter, λ, which is set by the user during model
generation and varies the penalty for model complexity.

0 20 40 60 80 100
Percent Active Pixels

0

2

4

6

8

10

P
re

di
ct

io
n

E
rr

or
(d

eg
re

es
)

Figure 2: The number of pixels acquired can be reduced dramati-
cally (up to 10×) with minor effect on gaze prediction accuracy.

Figure 2 shows the prediction accuracy vs model size — interest-
ingly, we see that varying the percentage of activated pixels from
100% down to about 10% has little to no effect on the prediction
accuracy. This shows that there is substantial redundancy in the eye
image, and the neural network is able to predict gaze just as well
with 10% of the pixels activated as 100% of the pixels. On our im-
ager, this means that sampling 10K pixels per image vs sampling
1K pixels per image has roughly the same prediction error, which
in turn can translate to substantial reduction in power consumption.
This data is averaged over the results from all of the users in our
study, and demonstrates that iShadow is able to predict gaze loca-
tion with an accuracy of roughly 4 degrees at 10% of the pixels used
(and therefore 10% of the power consumption).

Calibration.

We have shown that the ANN-based frame can learn accurate mod-
els with few pixels, but how much calibration data is needed to train

these models? To evaluate this, we look at how quickly the gaze
prediction converges as the amount of data that we use for train-
ing increases. Our goal is to minimize the calibration time so as to
decrease the burden on the person undergoing calibration.

Figure 3 shows the results for a particular choice of the regular-
ization parameter λ. We see that the convergence is very fast —
even if there is less than 30 seconds of data used for training, that is
more than sufficient for the algorithm to determine the appropriate
parameters. Similar results were seen for other values of λ. Thus,
the time for calibration is not a bottleneck in system operation.
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Figure 3: Amount of training time for the system versus the result-
ing gaze prediction accuracy.

4 Conclusion

We present a first-of-its-kind low power gaze tracker that is de-
signed to predict gaze in real-time while operating with a power
budget of a few tens of milliwatts. Our approach exploits the unique
properties of random access pixel cameras to achieve a flexible
energy-accuracy trade-off in the wearable/real-time setting. Our
results show that we can dramatically reduce power consumption
and resource needs by sampling only 10% of pixel values, with-
out compromising accuracy of gaze prediction. These results are
highly significant in that they offer a clear path toward ubiquitous
gaze tracking for a variety of applications in computer vision, be-
havioral sensing, mobile health, and mobile advertising.
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