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One of the central challenges in backscatter is how to enable concurrent transmissions.
Most backscatter protocols operate in a sequential TDMA-like manner due to the fact that
most nodes cannot overhear each other’s transmissions, which is detrimental for through-
out and energy consumption. Recent efforts to separate concurrent signals by inverting a
system of linear equations is also problematic due to varying channel coefficients caused
by system and environmental dynamics. In this paper, we introduce BST, a novel physical
layer for backscatter communication that enables concurrent transmission by leveraging
intra-bit multiplexing of OOK signals from multiple tags. The key idea underlying BST is
that the reader can sample at considerably higher rates than the tags, hence it can extract
time-domain signal edges that result from interleaved transmissions of several tags. Our
preliminary experiment results show that BST can achieve 5× the throughput of Buzz and
10× the throughput of TDMA-based solutions, such as EPC Gen 2.

I. Introduction

Backscatter communication has seen a revival in pop-
ularity in recent years due to the potential to enable
ultra-low power data transfer between sensor tags and
infrastructure. There has been substantial recent work
on backscatter, including efforts to improve range [9],
improve throughput [7, 10], leverage different power
harvesting sources [6, 3], and enable new applications
[5, 8].

One of the central challenges in backscatter is how
to enable concurrency. Most protocols designed for
backscatter operate in a sequential TDMA-like man-
ner due to the fact that nodes cannot overhear each
other’s transmissions [1]. This approach has several
performance drawbacks. First, the overall network-
wide bandwidth is limited by the maximum rate at
which individual tags can transmit, often only a few
tens or hundreds of kilobits/second. Second, con-
trol messages from the reader for enabling TDMA
scheduling has both bandwidth and power implica-
tions. In terms of bandwidth, control messages are
slow since the tags are generally expected to be
resource-limited and unable to decode data at a fast
rate. For example, the reader to tag data rate in EPC
Gen 2 is only 40∼160 kbps, whereas the tag to read-
er data rate is up to 640kbps. Into terms of power,
control messages require all tags to be listening and
processing messages, which has high energy overhead
on passively powered tags (74% of the power of run-
ning a backscatter radio [4]). In principle, concurrent

transfer can address these drawbacks. By letting n-
odes transfer concurrently, the aggregate data rate can
be higher than a single tag, and control overhead can
be amortized over many concurrent transmissions.

But enabling concurrency in backscatter is chal-
lenging. Backscatter tags are typically highly con-
strained, and incapable of leveraging computationally
sophisticated multiple access techniques such as CD-
MA. Further, since tags do not actively generate car-
rier wave, FDMA cannot be achieved on backscatter
tags. Finally, any approach that requires more sophis-
ticated transmission circuitry at the tag comes at the
cost of higher power consumption, which defeats the
backscatter power advantage. Thus, concurrency has
to be enabled while retaining the underlying simplici-
ty and low power nature of backscatter.

In recent years, there have been a few approaches
suggested for achieving such concurrency in backscat-
ter. One interesting approach is Buzz [7], which lever-
ages the fact that the received signal is a linear combi-
nation of the complex channel coefficients from each
tag to the reader, and the bits being transmitted from
each tag. Thus, the signals can be decoded once the
channel coefficients to each node are learnt. While
this approach can be effective in some deployments,
we argue that channel coefficients are not as stable
and predictable as one might expect, which makes de-
coding challenging. Another approach from Angerer
et al [2] is to use the received phase and amplitude
information to create multiple clusters for identifying
the collided bits, where each cluster corresponds to a



specific combination of bits from the nodes. This ap-
proach works well when there are only two or perhaps
three concurrent nodes. However, its performance de-
grades significantly when number of nodes increases
because the number of clusters increases exponential-
ly.

In this paper, we introduce BST1, a physical layer
technique for backscatter networks that enables con-
current transmission from multiple devices by lever-
aging temporally interleaved signal edges of the OOK
signals from multiple tags. The key idea underly-
ing BST is that the reader can sample at consider-
ably higher rates than the tags, hence it can extract
time-domain signal edges that result from interleaved
transmissions of several tags. Since nodes transmit vi-
a OOK, edges carry important information regarding
the bits being transmitted, hence allow us to decode
data from different tags.

Our contributions are three-fold. We carefully in-
vestigate the drawbacks of previous techniques that
have been proposed for concurrency in backscatter.
We then describe the central ideas in BST, and how we
can reliably detect signal edges and leverage them to
decode interleaved streams from multiple tags. Final-
ly, we develop an algorithm for dealing with collisions
between edges. We present a preliminary implemen-
tation of BST on a USRP based backscatter reader and
UMass Moo platforms and show that the throughput
achieved by BST is 5× higher than Buzz [7] and 10×
higher than TDMA-based solutions, such as EPC Gen
2 [1].

II. Case for BST

In this section, we argue that existing approaches for
collision recovery in backscatter have significant flaws
that prevent them from scaling to larger number of n-
odes and achieving higher throughput.

II.A. Vector based Collision Recovery

One approach from Angerer et al [2]. is to leverage
the fact that when tags transmit simultaneously, their
phase and amplitude information (IQ vector) creates
multiple clusters, where each cluster corresponds to a
specific combination of values from the nodes. This
approach is similar to methods like Quadrature Am-
plitude Modulation (QAM) shown in Figure 1(a), but
the major difference is that while the signals in QAM
are structured to be as far apart as possible, the cluster-

1BST stands for Backscatter Spike Train, representing a se-
quence of edges in time.

s in our case are unstructured and depend on channel
coefficients between each node and the reader.

For example, consider that there are two tags that
transmit simultaneously. In the I (in phase) channel,
the signal of each tag reflected when sending 0 is I(i,0)
and I(i,1) when sending 1. Similarly in the Q (quad-
rant) channel the signal is Q(i,0) and Q(i,1) respective-
ly. Define complex vector V:

V(i,0) = I(i,0) +Q(i,0) (1)

V(i,1) = I(i,1) +Q(i,1) (2)

The total signal reflected by both tags can be one of
four options (depending on the bit, si, transmitted by
each tag):


ΣV1 = V(1,0) + V(2,0) , s1 = 0, s2 = 0;

ΣV2 = V(1,0) + V(2,1) , s1 = 0, s2 = 1;

ΣV3 = V(1,1) + V(2,0) , s1 = 1, s2 = 0;

ΣV4 = V(1,1) + V(2,1) , s1 = 1, s2 = 1;

 (3)

Besides the signal reflected by the tags, the reader
also receives the signal reflected by the environment.
For simplicity, let us assume that the reflection from
the environment is a constant, so it won’t affect the
number of clusters, but will only add an offset to them.

Figure 1(b) shows the empirically obtained IQ con-
stellation of received signal generated by 2 tags. We
can see four dense clusters with sparse points between
them. The sparse points are imperfect transitions be-
tween different states of transmitted signal.

Lack of scalability: In the two nodes example, it is
easy to see that simply choosing the closest cluster to
a received vector can decode the signal from each n-
ode with high probability, but when we try to increase
the number of tags, performance using this method de-
grades rapidly. This is because given N tags (N >2),
there are 2N clusters in the IQ plot, resulting in clus-
ters being closer to each other. An example with six
tags is shown in Figure 1(c). The figure has 64 clus-
ters that are very close to each other, and dwell time in
the cluster is short, which means there are more points
lie between clusters. In this case, separating the signal
by using spatial-division multiplexing is very difficult
[2].

II.B. Signal Inversion for Collision Re-
covery

A second approach for decoding concurrent transfer-
s from tags is to leverage the fact that backscatter
signals are narrowband, and the received signal is a
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(a) 4QAM IQ clusters.
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(c) IQ plot of signal generated by 6 tags

Figure 1: 4QAM, IQ plot with 2 tags, and IQ plot with 6 tags.

linear combination of a) the complex channel coeffi-
cients from each tag to the reader, and b) the bit being
transmitted from each tag. This can be expressed as:
y = h1×nbn×1, where y, the received symbol at the
reader, is a linear combination of the complex chan-
nel coefficient corresponding to node i, hi, and the bit
being transmitted by the node, bi. Once the channel
coefficients from each band are known, the function
can be inverted to estimate the bits transmitted by each
tag.

Buzz [7] is a protocol that leverages this idea.
Briefly, Buzz first determines the channel coefficients
of each node by using a compressive sensing method.
Once the channel coefficients are known, nodes trans-
mit their message in a synchronized manner with slot
boundaries being aligned. To allow the reader to de-
code which node is transmitting which bit, the nodes
re-transmit the same bit multiple times with different
random combinations as determined by a pre-defined
random matrix. This allows the decoder to observe d-
ifferent combinations of the concurrent transmissions,
enabling it to decode using a belief propagation algo-
rithm that continuously searches for the lowest error
combination. Once a combination with low error is
determined, nodes move on to transmit the next mes-
sage.

A key problem with this approach is that the chan-
nel coefficients need to be known a priori in-order
for the scheme to work, which makes it unsuitable in
scenarios where either the node or the environment
changes frequently.

Channel coefficients can change for three reasons.
The first reason why channel coefficients can change
is when there is mobility of objects in the vicinity of
the tag. In Figure 2(a), a node is stationary in fron-
t of a reader while an individual moves around the
room, resulting in substantial changes to the channel
coefficients. Second, the channel coefficients is also
sensitive to even small movements to the tag. In Fig-

ure 2(b), a node’s orientation is varied by rotating it
without displacing the node, again resulting in signifi-
cant changes to the channel coefficients. Third, chan-
nel coefficients also change when there is near-field
coupling between the antennas of two or more tags.
Figure 2(c) illustrates this case with a simple experi-
ment where two tags were placed far apart, and then
brought closer together. As shown, both channel coef-
ficients are unchanged when the nodes are about 1m a-
part, but when nodes become closer together (roughly
5cm), there is near-field coupling across the antennas
of the nodes resulting in variations of channel coeffi-
cients. To make matters worse, the coupling depends
on the bit transmitted by each tag, making decoding
extremely hard. Buzz does not explicitly address this
problem, but dealing with variations in channel coef-
ficients is costly since the compressive sensing-based
estimation process is complex and elaborate.

III. BST Design

The core primitive in BST is reliable edge detection.
We discuss this primitive, and then show that we can
design a reliable concurrent transfer protocol over this
layer.

III.A. Leveraging interleaved signal
edges

Backscatter is an asymmetric communication system
in that the reader is far more powerful than the tag.
Thus, the reader sampling rates are often orders of
magnitude higher than the maximum rate at which any
single tag can transmit. For example, the USRP reader
can sample at 100 million samples per second, while a
typical Moo sensor can transmit at a maximum of 250
kbps. The implication is that even if nodes transmit in
an interleaved manner, resulting in many more edges
than a single node can generate, the reader can over-
sample to detect these edges as long as there is a small
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Figure 2: Dynamics in Channel Coefficients

amount of temporal separation across the edges. Of
course, the implicit assumption that we make is that
the edges are separable and don’t overlap, and this is
a key consideration that we address in this paper.

While edges are not particularly useful for com-
plex encoding or modulation schemes such as OFDM,
backscatter devices are simple and use OOK modula-
tion. As a result, each edge carries information about
when the tag toggled its transistor. This information,
in turn, can be leveraged to decode the signal as we
will soon describe.

Different from systems discussed in section II that
depend on the combination of signal and channel con-
dition, BST relies on edges. Clearly, edges are not im-
pacted by changes in the channel coefficients unlike
alternate methods. Also, if different nodes have dif-
ferent SNRs, then edges corresponding to nodes with
strong SNR will be decoded with fewer errors, and
will have fewer retransmissions. In terms of scalabil-
ity, edge-based techniques scale much better than use
of IQ clusters; however, as we show later, collision-
s can increase when too many nodes interleave their
edges.

We now turn to a more detailed description of B-
ST. The decoding process of BST includes two step-
s: time-domain edge detection and bits interpretation
from detected edges. We start with reliable edge de-
tection.

III.B. Reliable edge detection

Before diving into practical approaches for detecting
signal edges, it is useful to understand the structure
of the ASK (OOK) signal generated by backscatter
devices.

Signal model: When a backscatter reader communi-
cates with backscatter devices, its carrier wave is sent
on both I and Q channels. Therefore, the reflected
signal generated by toggling a transistor also have t-
wo components: one reflection on I channel and the

other on the Q channel. For a single transmitter, the
received signal at the reader is:

Aj = sjV(j,I) + s̄jV(j,Q) (4)

In this model, sj is the reflection coefficient, and
V(j,I) and V(j,Q) are signal vectors on I and Q chan-
nels. When multiple backscatter devices transmit to a
reader simultaneously, their signal linearly add up on
I and Q channels. Therefore, for concurrent transmis-
sion, the received signal at the reader is:

ΣA =

N∑
j=1

sjV(j,I) +

N∑
j=1

s̄jV(j,Q) (5)

Edge detection: A key observation is that the lin-
early combined signal received by a single reader stil-
l contains the edge information of each individual
backscatter transmitter. This is a result of the linear
signal addition described in the previous signal mod-
el. When an individual backscatter device toggles its
transistor, it introduces edges on both I and Q channel-
s of the combined signal at the receiver, which enables
the receiver to detect the edge.

Figure 3 shows an example of how edge detection
can be done on I and Q channels. Let’s assume that
only one backscatter device toggles its transistor in
this example. The background signal, which are gen-
erated by other backscatter devices as well as the sig-
nal reflected by ambient environmental background,
is represented by a signal vector V (bg). When the de-
vice transmits, it generates a reflected signal V (tx0)
for data zero and V (tx1) for data one. The signal re-
ceived by a backscatter reader is V (rx0) and V (rx1)
respectively, which are the addition between back-
ground signal and transmitted signal. Intuitively, a s-
ingle device’s signal edge detection can be done by
checking the difference between V (rx0) and V (rx1)
as the following equation shows:



∆A = |−−−→Vdiff | = |
−−−−→
V (rx1)−

−−−−→
V (rx0)| (6)
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Figure 3: Edge detection based on signal vectors on I
and Q channels

When the differential vector is greater than a prede-
fined threshold, an edge of a single device is detected.
Some approaches, such as EPC Gen 2, use amplitude
of the signal for edge detection. However, those ap-
proaches lose phase information and lead to reduced
SNR as well as potential errors in detection.

III.C. Assigning edges to nodes

Once edges have been detected, the next question is
how to assign edges to the corresponding nodes that
generated them. Assigning an edge to a node with-
out any priori information of transmitters is difficult.
Therefore, we make each node transmit in a period-
ic manner with a pre-defined period. This is shown
in Figure 4 where the first node starts transmission at
t0 and the second starts at t1. Those two nodes use
different periods, T1 and T2, for transmitting infor-
mation. Because of the difference of starting time as
well as transmission period, the reader can then sep-
arate the different sequences of edges by looking for
the streams that have different time-offsets.

T1 T1

T2 T2
detected 
edges

t0 t1 no edge is present 
because of 00 or 11

T2 T2

Figure 4: Detected edges of several transmitters

Once the streams are identified, the next stage is
to identify gaps in the edge sequence — these gaps
are not errors, instead, they carry critical information
about instances where a “00” or “11” occurs (hence
the lack of an edge). They can be identified by detect-
ing the presence of an edge at time ti + nTi where ti

is the starting time of transmission and Ti is the pe-
riod of transmission. Thus, we now have a sequence
of ones and zeros, where ones correspond to a change
in the transmission symbol (one to zero or vice-versa)
and zero corresponds to no change in the transmission
symbol.

III.D. Recovering data from edges

Once we know the edge sequence corresponding to
each node, we can now figure out the actual bit stream
being transmitted if we have an anchor that tells us the
starting point. For example, let’s say that we know
each stream starts with a one. Then, given the se-
quence of edges, we know at what time points the val-
ue changed from 1 to 0, or vice-versa, hence we can
decode the bitstream from the edges. The process is
shown in table 1. The data starts with 1 and the correct
output is decoded bits 2.

Of course, this process assumes that there are no
missed edges or erroneously detected edges. If so,
this can throw off the subsequent decoding, and cause
errors in the rest of the sequence. To avoid this, we
insert a sentinel bit at specific intervals. For exam-
ple, consider the case where we insert a “1” after ev-
ery byte in the data. Then we know that every 9th bit
should be a 1 in the decoding, which lets us bootstrap
the decoding of the subsequent byte, and lets us detect
single edge errors in the previous byte.

Table 1: Data Recovery
Sent Bits 1 0 0 0 0 1 1 0

Relative Bits x 1 0 0 0 1 0 1
Decoded Bits 1 0 1 1 1 1 0 0 1
Decoded Bits 2 1 0 0 0 0 1 1 0

III.E. Handling edge collisions

Our discussion so far assumes that edges are not over-
lapping and therefore easily separable. The obvious
question is how often edges from different nodes over-
lap, and how to deal with this problem.

Let us first ask how frequently edges overlap. Set
the baud rate for backscatter node to 100kbps, so
this is the rate at which an individual node generates
edges. In our current implementation, the edge detec-
tion resolution is about 3 samples at 25M samples per
second from the reader. Thus, if two edges were to
appear within 3 samples of each other, it would result
in a collision.

We use two methods to deal with edge collision-
s. The first approach that the reader tries to locally



perturb colliders to avoid collisions. To achieve this,
the reader sending a short jitter pulse when it detects
a collision, causing the nodes that just transmitted to
re-try with a new offset. If this method fails, the sec-
ond approach that the reader tries is to asks nodes to
reduce their bit rate by half if the number of retries
exceed a certain threshold. For example, for 16 con-
current transmitters with a bit rate of 100 kbps, the
collision probability is 0.93. which means an expecta-
tion of 13.1 retries before success in the start-up pro-
cess. However, if we reduce the bit rate by half to 50
kbps, collision probability drops to 0.72, which means
only 3.6 retries are needed before a success.

IV. Preliminary Results

We now present some initial results for BST. Fig-
ure 5 shows the aggregate communication through-
put achieved across multiple concurrent transmitters
for a fixed bit rate. In this experiment, we deploy 1,
2, 4, 8, 12, and 16 backscatter devices 1 meter from
a backscatter reader. As the number of transmitter-
s increases, the obtained aggregate throughput at the
backscatter reader also increases. We observe a linear
increase when there are fewer than twelve transmitter-
s, which means that the reader is able to successfully
decode all the edges from these transmitters. When
the number of transmitters is larger than twelve, the
aggregate throughput degrades as a result of collided
edges — as described earlier, this would need to be
addressed by reducing the bit rate.

As baseline, we show the throughput of a TDMA
based scheduling algorithm, which has a roughly fixed
throughput irrespective of the number of tags. The
throughput of BST is up to 10× higher than a TDMA-
based approach as the number of transmitters increas-
es.
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Figure 5: BST Goodput

V. Conclusion

In this paper, we introduce BST, a novel physical
layer technique for backscatter networks that enables
concurrent transmission from multiple devices. The
key idea in BST is to leverage high-rate sampling
backscatter reader and detect interleaved signal edges
to decode collided bits from multiple concurrent trans-
mitters. We propose an algorithm for reliable signal
edge detection and discuss how to use these edges to
decode interleaved streams from multiple tags. In the
case of a dense tag deployment where signal edges
might collide with each other, we also develop an al-
gorithm for resolving collisions between edges. Our
experimental results show that BST can achieve 5× to
10× throughput improvement over existing approach-
es.
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