
Starfish: Resilient Image Compression for AIoT Cameras
Pan Hu

panhu@stanford.edu
Stanford University

Junha Im
junhaim@stanford.edu

Stanford University, Samsung Electronics

Zain Asgar
zasgar@stanford.edu
Stanford University

Sachin Katti
skatti@stanford.edu
Stanford University

ABSTRACT

Cameras are key enablers for a wide range of IoT use cases including
smart cities, intelligent transportation, AI-enabled farms, and more.
These IoT applications require cloud software (including models) to
act on the images. However, traditional task oblivious compression
techniques are a poor fit for delivering images over low power IoT
networks that are lossy and limited in capacity. The key challenge
is their brittleness against packet loss; they are highly sensitive to
small amounts of packet loss requiring retransmission for transport,
which further reduces the available capacity of the network. We
propose Starfish, a design that achieves better compression ratios
and is graceful with packet loss. In addition to that, Starfish features
content-awareness and task-awareness, meaning that we can build
specialized codecs for each application scenario and optimized
for task objectives, including objective/perceptual quality as well
as AI tasks directly. We carefully design the DNN architecture
and use an AutoML method to search for TinyML models that
work on extremely low power/cost AIoT accelerators. Starfish is
not only the first image compress framework that works on a $3
AIoT accelerators but also outperforms JPEG, a well-established
baseline, by up to 3×, in terms of bandwidth efficiency and up to
2.5× as efficient in energy consumption. It also features graceful
and gradual performance degradation in the presence of packet
loss. The application-level simulation indicates that Starfish could
deliver 3.7× images while providing better image quality.

CCS CONCEPTS

• Computer systems organization→ Neural networks; • Net-
works→Error detection and error correction;Cyber-physical
networks.

KEYWORDS

artificial intelligence, internet of things, compression, resilient

ACM Reference Format:

Pan Hu, Junha Im, Zain Asgar, and Sachin Katti. 2018. Starfish: Resilient
Image Compression for AIoT Cameras. In Woodstock ’18: ACM Symposium

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Woodstock ’18, June 03–05, 2018, Woodstock, NY
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/10.1145/1122445.1122456

Starfish

JPEG

IoT Camera Lossy Image
Compression

Lossy
Link

IoT Gateway

Figure 1: Illustration of uploading image from IoT camera

to Gateway with Starfish and conventional JPEG-based

methods. DNN-based Starfish is resilient to packet loss

and results in better image quality.

on Neural Gaze Detection, June 03–05, 2018, Woodstock, NY . ACM, New York,
NY, USA, 14 pages. https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION

Recent advances in computer vision technologies have been a key
enabler for the pervasive growth of vision-based IoT applications
ranging from smart cities, intelligent transportation, AI-enabled
factory to farms [51]. Cities and construction sites use cameras for
intelligent transportation and monitoring to increase safety and
security [2, 10, 44]. Oil refineries and farms use cameras to perform
predictive maintenance and irrigation [49, 66]. The camera, being
one of the most information-rich and versatile sensors maximizes
it’s potential when coupled with powerful machine perception
algorithms.

Although some computer vision applications can be performed
onsite without cloud support, many applications need to leverage
the vast compute and storage available on the cloud. These applica-
tions typically require heavy computation, perform computation
on data from multiple camera streams, or store the raw data for
archival purposes and future applications.

Transferring images efficiently to the cloud is essential for
many battery-powered IoT cameras. Current solutions rely on LP-
WAN(Low Power Wide Area Network) such as LoRaWAN and 5G
IoT for communication that tends to have very limited bandwidth
and high packet loss rate due to low transmit power, high path loss,
and collision. Increasing the reliability of the network is possible.
However, this comes at the cost of more complexity and retrans-
mission of data, significantly reducing the total network capacity.

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

Woodstock ’18, June 03–05, 2018, Woodstock, NY Pan Hu, Junha Im, Zain Asgar, and Sachin Katti

Studies show that reducing the packet error rate by 20% reduces
network capacity by 5.2 times [75] in LoRaWAN.

The highly limited network capacity in LPWAN call for extreme
image compression. However, traditional image compression such
as JPEG is a poor fit for most IoT applications; specifically, we make
the following observations about the design objectives of JPEG:
1) designed to be used on reliable networks; 2) general-purpose
compression applicable to a variety of images; 3) content and task
oblivious. While JPEG is an excellent general-purpose image com-
pression algorithm, it’s not necessarily the best fit for IoT appli-
cations where the task objective and context are typically clear.
Further, since many IoT devices use low-power networks with un-
reliable transport making JPEGs brittleness to any packet loss a
substantial limitation.

If our goal is to send a lossy-compressed image over LPWAN,
why do we need to assume lossless transmission of compressed
data? We present Starfish, an application layer solution that
works with intrinsically lossy wireless links. Starfish avoids inef-
ficient retransmission by addressing information loss and data loss
altogether in the application space utilizing information about the
context and task objectives. Inspired by recent advances in DNN
hardware and software, Starfish uses a tiny DNN to generate
a loss-resilient, unstructured compressed representation that de-
grades gracefully in the presence of data loss, as shown in Figure 1.
Unlike structured representation in JPEG, the information is dis-
tributed uniformly in DNN representation: reconstructing an image
takes inputs from all bytes in representation rather than relying on
specific bytes. DNN does not need the header in which data loss
could be fatal. As a result, image quality degrades gracefully as data
loss occurs rather than completely damage part of the image.

The ability to tolerate packet loss in application space not only
simplifies MAC(Medium Access Control) layer protocol but also
brings significant benefits in energy consumption and network ca-
pacity. LPWAN nodes can send at higher bitrates without the need
to wait during the back-off period before retransmission. Such abil-
ity is extremely powerful in LPWAN, where thousands to millions
of nodes are connected to each base station or gateway, and nodes
need to conserve energy as much as possible to extend battery life.

Nevertheless, our DNN-based design makes Starfish aware
of the content and objectives in sending compressed images over
LPWAN. Starfish generates application-specific codecs that are
tailored for images from specific IoT application scenarios e.g. traf-
fic cameras or property surveillance by training on similar image
datasets, which differs from JPEG that is designed to compress ver-
satile images. Starfish also optimizes for a wide range of task
objectives directly, including PSNR (Peak Signal to Noise Ratio), MS-
SSIM(Multi-Scale Structure Similarity), perceptual quality, machine
perception task performance, or a joint optimization objective.

One of the challenges we tackle is the design of a DNN that runs
efficiently on low cost, low power IoT devices. AIoT (AI for IoT)
accelerators are very different from desktop GPUs with various
memory/storage/computation/energy constraints. We use AutoML
techniques to generate tiny DNN that runs efficiently on AIoT
devices based on a hardware-aware NAS(Network Architecture
Search) accelerated by learning curve extrapolation. It improves
NAS efficiency by rejecting DNN configurations that exceed the
capability of AIoT accelerators as well as those who underperform

according to the learning performance predictor. We start with
sampling a small fraction of the design space and train them until
they converge. The training curves are used to train the learning
performance predictor based on LSTM that predicts performance
from first a few epochs of the training curve. We then train each
configuration in the design space for a few epochs and continue to
train only if the predicted performance falls in the top percentile.
We showcase our design and test a tiny DNN that runs on a $3 AIoT
accelerator, as well as the more powerful Google Edge TPU.

Benchmark results on four large public datasets indicate that we
can achieve the same task objective while using only a small fraction
of the energy/bandwidth, thus significantly reducing the cost of
operation and accommodating more AIoT cameras and increase
task performance. We summarize our contributions as follows:

• We propose Starfish, a lossy image compression framework
designed for LPWAN that processes all the information loss
in the application layer, thus simplifying wireless protocol de-
sign, improves the network throughput and battery life of IoT
cameras.
• To our best knowledge, Starfish is the first DNN-based com-
pression framework that runs efficiently on low-cost AIoT de-
vices. We generate DNN configuration with NAS automatically,
making it future-proof and generalizable to a diverse set of DNN
architectures and AIoT hardware.
• Benchmarks on a large-scale image dataset and IoT links sug-
gest that Starfish is up to 3∼4× as efficient in compression
size, and up to 2.5× as efficient in terms of time and energy effi-
ciency for lossless traffic, due to the task-awareness and content-
awareness of Starfish. Simulation of 100 to 1000 nodes sug-
gests Starfish could deliver more than 3.7× images with better
image quality in lossy traffic scenarios.

2 BACKGROUND AND MOTIVATION

We describe the background work motivating the design of our
streaming framework in this section, starting with an analysis of
network/compression andAIoT hardware, then show the challenges
of using conventional image compression and our approach to deal
with these limitations.

Characteristics of LPWAN: despite providing a connection to
a massive number of nodes, each LPWAN cell has a limited total
capacity. Further, LPWAN nodes have to tolerate high link loss due
to long distance or obstacles. They tend to lack the support of an
advanced modulation scheme due to power/cost limitation and the
entire network operating inside a narrow spectrum. The estimated
total uplink network capacity for a LoRaWAN gateway is less than
100kbps [27], which has to be shared by potentially thousands of
nodes connected to that gateway. Similarly, 5G mMTC targets at
supporting 300,000 IoT nodes per cellular station using only 10MHz
spectrum [15]. This scarcity in network capacity calls for extreme
compression to send image/video data over LPWAN.

Packet loss makes the problem even worse. We use LoRaWAN
as an example. Packet loss is prevalent in LoRaWAN due to path
loss and collision from other transmitters according to previous
indoor and outdoor measurements [54, 62, 65]. Also, the study [46]
shows that frequent retransmission is unrealistic due to the limited
capacity of acknowledgments at the gateway, increased energy

Starfish: Resilient Image Compression for AIoT Cameras Woodstock ’18, June 03–05, 2018, Woodstock, NY

Good Average Bad
Link Scenario

0

5

10

15

Ti
m

e
/ S

ec
on

ds
161

Capture
Compress
Transmit

Good Average Bad
Link Scenario

0
50

100
150
200
250
300
350

En
er

gy
 /

uA
h

2002

Capture
Compress
Transmit

Figure 2: Time and energy consumption breakdown for im-

age capture, compression, and transmission over LoRaWAN.

The time and energy spent on compression are barely

visible because JPEG compression is hardware-accelerated

and takes 16ms. Transmission over LoRaWAN dominates

time/energy consumption in all scenarios and exceeds the

range for both charts when the link condition is poor.

consumption for LoRa nodes as well as an increased probability
of collision. As a result, previous applications prefer lower bitrate
that has a lower packet loss rate. However, we observed that if the
application could tolerate a packet loss rate of 20%, we can use a
higher transmit bitrate [34], thus drastically increase the energy
efficiency of LoRaWAN nodes and total link capacity, as shown in
Table 1. The baseline method is the conventional mode that trying
to have a small packet loss rate by choosing slower bitrates while
lossy mode shows possible bitrates if a packet loss rate of 20% is
acceptable. The result shows that we can reduce transmission air-
time and energy consumption by half, thus double the total link
capacity.

Energy/time consumption break-down: how much time/en-
ergy do we spend on communication in an LPWAN IoT camera
system? To answer that question, we analyze the energy and time
consumed on the image capturing, compression, and transmit data
over LPWAN. A break-down of this analysis is in Figure 2. It is
clear that communication dominates the time/energy cost; there is a
severe imbalance as only a tiny amount of time/energy is allocated
to compute a compressed representation of images. Can the overall
system performance be improved by spending more on compute
to improve the compression ratio, therefore, decreasing the overall
network cost? To answer this question, we analyze current image
compression algorithms on IoT devices and explore a novel design
that works better for an LPWAN based IoT device.

Image compression on IoT devices: in this paper, we focus on
lossy image compression as lossless compression algorithms typ-
ically generate images that are too large for LPWAN. Although
many lossy image codecs have been proposed like JPEG [68],
JPEG2000 [55], WebP [14] and BPG [1], IoT devices tend to sup-
port JPEG only due to its simplicity and low resource requirement.
Similarly, JPEG-compatible encoders like Guetzli [6] offer better
performance but require significantly more RAM (300MB) and CPU
time (1 min on desktop) so they’re not feasible on IoT devices. In
this paper, we use standard JPEG as our baseline. We also limit our
scope to IoT cameras that send video as independent frames due
to the high cost of inter-frame prediction in H.264 [71], as well as

Scan of
Image

Patches

Marker Segment

0xFFD8 SOI(Start Of Image)

0xFFC0 SOF0(Start Of Frame 0)

0xFFDB DQT(Define Quantization Table)

0xFFC4 DHT(Define Huffman Table)

0xFFDA SOS(Start Of Scan)

0xFFD9 EOI(End Of Image)

Metadata

Figure 3: File structure of JPEG (JFIF standard with baseline

profile, only showing essential segments for decoding).

the fact that they send at a very low frame rate so the gain from
inter-frame prediction may be limited.

JPEG compression consists of three steps: perform DCT (Discrete
Cosine Transform) on patches of the input image, quantize DCT
coefficients according to the quantization table determined from
compression quality parameter, then encode the quantized DCT
coefficients with an entropy encoder (typically Huffman). Image
data is stored in a structured manner with markers to indicate
each segment, as shown in Figure 3. It starts with metadata that
describes the type of algorithm and sampling scheme in SOI and
quantization/Huffman compression table in DQT/DHT. The actual
compressed data of each patch is stored sequentially after SOS.

Though JPEG works fine for a wide range of application sce-
narios, it does have several deficiencies in LPWAN IoT camera
setting:

• Resiliency: the structured storage format of JPEG requires re-
liable data transfer otherwise it fails abruptly: any loss in the
metadata segment will block decoding of the entire image; a
specially designed decoder may handle the loss of image patches,
but it will still lose the relevant patches completely.
• Task agnostic: standard JPEG encoder cannot optimize for task
objectives like SSIM (structural similarity index) or image clas-
sification / object detection accuracy directly, especially more
and more IoT images/videos will be consumed by machine per-
ceptions models rather than humans.
• Content agnostic: JPEG encoder is designed to be agnostic of
image content that accepts all possible images. However, we
observe that many IoT cameras take a very similar image as
input. As an example, traffic cameras will always see roads,
cars, and pedestrians. An encoder specialized to compress these
objects can do better as it does not need to care about other
inputs.

As an alternative, we design Starfish, a DNN-based com-
pressed streaming framework that specially optimized for LPWAN
IoT camera applications. It features:

• Loss-resilient: interference and collision in the wireless chan-
nel can cause packet loss and partial reception. Unless expensive
retransmit operations are used, these losses will lead to a fail-
ure to decode that part of the image if JPEG encoding is used.
In contrast, our unstructured DNN can provide graceful qual-
ity degradation in such cases. The loss resiliency could also
improve energy efficiency and network capacity by avoiding
retransmission.

Woodstock ’18, June 03–05, 2018, Woodstock, NY Pan Hu, Junha Im, Zain Asgar, and Sachin Katti

Table 1: Benefits of tolerating packet loss in LoRaWAN
1

Scenario

Bitrate (bps) Payload / Packet Size (Bytes) Air-time (seconds) / Image
2

TX Energy (uAh) / Image

Baseline Lossy Baseline Lossy Baseline Lossy Baseline Lossy

Good 5,469 10,9383 242 / 255 242 / 255 4.40 2.20 55.61 27.76

Average 1,758 3,125 115 / 128 242 / 255 14.89 7.78 188.25 97.16

Bad 245 448 51 / 64 51 / 64 160.97 90.32 1996.10 1127.20
1 Assuming European 868 MHz ISM band, spreading factor=7-12, CRC=1, N_preamble=8, coding rate=2/3 or 4/5, with implicit header.
2 Assuming an image size of 2.5kB.
3 Bandwidth=250kHz

Table 2: Comparison of different AI computation platforms

Desktop GPU (Nvidia K80) AIoT Accelerator (K210) Arduino Uno (ATMEGA 328p)

Cost $900 (GPU only) $8 ($3 chip only) $20 ($2 for MCU only)

Power 300W, AC powered 300mW, battery-powered 225mW, battery-powered

Memory 24GB 2MB 2kB

Speed 13.45TFLOPS FP32 230GOPS INT8 8MOPS INT8

Software TensorFlow[8]/PyTorch[52, 53] TensorFlow Lite[8] TensorFlow Lite Micro[8]

• Directly optimize for task objective: our DNN compression
framework is end-to-end trainable, making it possible to directly
optimize any differentiable objectives like PSNR (Peak Signal to
Noise Ratio), MS-SSIM (Multi-Scale Structural Similarity index),
or machine perception model accuracy.
• Specialize to each AIoT camera applications: we can gen-
erate a specialized DNN model by training on a similar image
dataset for better results [29]. It is also possible to fine-tune the
compression model as we collect more images from IoT cameras
in the same application scenario.

However, running DNN on IoT devices is not as easy as on
GPUs due to stringent limitations on computational power and
energy budget. Although traditional micro-controllers like STM32
and MSP430 support tiny neural networks with low dimension
input for keyword spotting [77] and gesture recognition with ac-
celerometer [7], they’re ill-suited for running CNN (Convolutional
Neural Network) with images as an input. These general-purpose
microcontrollers have instruction sets optimized for control logic
focusing on branch prediction and data prediction. However, the
majority of CNN inference tasks are deterministic and compute-
heavy, utilizing massive matrix multiplications. Recently, a number
of AI accelerators for IoT devices have enabled low-power and
low-cost acceleration of CNN inference as shown in Figure 4.

We compare the specs of different AI platforms to better un-
derstand the performance of AI accelerators for IoT as shown in
Table 2. The cost and power consumption of an IoT AI accelera-
tor is comparable to an Arduino while providing several orders of
magnitude more memory and compute power. Their performance,
however, still falls far behind the traditional desktop-grade GPUs.
The limited compute and memory available on these accelerators
make designing a DNN that performs image compression a chal-
lenging task. We further discuss the limitations of the AIoT DNN
accelerator and how it affects DNN design in Section §3.1.

K210
Chip

WiFi

Flash Power

Figure 4: An $8 K210 Kendryte AI accelerator module. The

corresponding system layout is shown on the right. It in-

cludes K210 chip (with RISC-V CPU and AI inference accel-

erator), an ESP8266 WiFi module, 16MB Flash storage and

power management chip.

3 SYSTEM DESIGN

We present the design of our AIoT streaming framework in this
section. As an overview, we first present the basics of image com-
pression using a DNN, followed by our design of a DNN based
image compressor, including hardware-aware network architecture
search, design of application-specific codec, and how we quan-
tize model and intermediate representation. Lastly, we present our
design to improve the resiliency of the compression DNN.

3.1 Design of Compression DNN

To perform DNN-based image compression, we typically use a a
DNN encoder E to generate an intermediate representation R𝑁

with length of 𝑁 on input image I(𝐻,𝑊 ,𝐶) with 𝐻,𝑊 ,𝐶 as the
height/width/channel respectively. The intermediate representa-
tion is then quantized with Q that maps floating point values into
low-precision integers Z𝑁 . They are further compressed with an
entropy encoderC before sending over the network. On the receiver
side, we decode the compressed data using corresponding entropy
decompression and run through a DNN decoder D to output recov-
ered image I′ (𝐻,𝑊 ,𝐶) . The entire process is shown in Equation 1:

Starfish: Resilient Image Compression for AIoT Cameras Woodstock ’18, June 03–05, 2018, Woodstock, NY

Input Image

[320, 240, 3]

Padded Slice

Conv2D MaxPool
Conv2D

MaxPool Conv2D

Dense

[40, 32, 3]

[40, 32, 128] [20,16,128] [20,16,128] [10,8,128] [10,8,128]

Flatten

Figure 5: Architecture of encoder DNN. Images are optionally sliced into patches, then zero-padded as quality degrades on

edges of decoded images. Padded patches are processed multiple stages of 2D convolution (stride=1 with 3*3 kernel) followed

by 2*2 max-pooling layer to reduce spatial resolution, then flattened to generate binary representation.

I(𝐻,𝑊 ,𝐶) →
E
R𝑁 →

Q
Z𝑁 →

C︸ ︷︷ ︸
Sender/Encoder

B𝐿 →
C−1
Z𝑁 →

D
I′ (𝐻,𝑊 ,𝐶)︸ ︷︷ ︸

Receiver/Decoder

(1)

Design and implement DNN on AIoT accelerators is not as
straight-forward as on general purpose GPU. As we’ve shown in
Table 2, low-cost AIoT accelerators pose strict limitations on the
DNN architecture used, including RAM size, computation power,
and supported operators. Only very basic operators include 2D con-
volution, max pooling, and softmax are supported due to hardware
limitation1. Limitations exist even within the supported operator.
For example, the convolution filter size has to be 1*1 or 3*3, the
stride has to be 1 or 2 with no more than 1024 filter channels. These
limitations prevent us from using existing DNN designs directly.
For example, RNN (Recurrent Neural Network) is a very popular
method to extract spatial correlation over images but the underlying
operators are not supported yet.

We carefully designed our DNN to use only the supported oper-
ators. The architecture of encoder DNN is shown in Figure 5. We
omit the architecture of decoder DNN as it basically mirrors the en-
coder. The decoder DNN takes the quantized binary stream as input,
uses nearest-neighbor scaling for up-sampling, and has the same 2D
convolutional layers. We use ReLU [50] activation for most layers
in encoder and decoder DNN, except: 1) Sigmoid activation at the
output of decoder DNN to generate images with values between [0,
1]; 2) no activation/nonlinearities for the layer before Flatten layer
(to generate binary representation) and after Flatten layer so the
binary representation uses the full data range (rather than throw
away the negative half in ReLU). We avoid using batch normaliza-
tion during training compression DNN is more sensitive to internal
noise, thus normalization leading to poor performance [13].

Compress image in full vs. patches: low-cost AIoT accelera-
tors have very limited memory that can be used to hold activations
and weights. Though it is possible to feed full-resolution image in
to the AIoT accelerator so the compression can be done in one pass,
the performance is poor due to limited number of filter channels.
There is a trade-off between the patch size used and the number
of filter channels available. The size of activations and trainable
weights of a vanilla convolutional layer is shown in Equation 2:

1Notice that these limitations are not unique to our platform. Other low-cost AIoT
accelerators and even more powerful Edge AI accelerators like Google Edge TPU have
similar limitations. We expect that our design choices can be applied to a wide variety
of AIoT platforms.

Table 3: Design Space of Image Compression DNN

Design Dimension Range Choices

Number of Image Patches 1,4,16 3
Number of Conv. Layers 2,3,4 3
Number of Channels of each Layer [4, 256] 64

𝑁𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = ℎ ×𝑤 ×𝐶𝑜𝑢𝑡
𝑁𝑤𝑒𝑖𝑔ℎ𝑡𝑠 = 𝑘 × 𝑘 ×𝐶𝑖𝑛 ×𝐶𝑜𝑢𝑡 +𝐶𝑜𝑢𝑡

(2)

Where ℎ,𝑤 are height, width of output activation, k is size
of filter kernel and 𝐶𝑖𝑛,𝐶𝑜𝑢𝑡 are number of input/output filter
channels respectively. With 𝐶𝑖𝑛,𝐶𝑜𝑢𝑡 set to 36 we get very close
(224*224*36=1.81 MBytes) to the 2MB memory limit but having a
small number (11.7k) of filter weights. The limited weights prohibit
encoder-decoder from working effectively. Instead, if we divide in-
put into four patches, we can quadruple filter channels and trainable
weights are 16× as original configuration.

3.1.1 Network Architecture Search.

The design space for image compression DNN is large, ours
consists of 3 ∗ 643 = 786432 possible configurations as shown
in Table 3. It’s infeasible to perform a brute-force search for the
best possible parameter set: training a single compression DNN
takes about $30 and 10 hours2, so the cost of searching through all
possible combinations of design space is prohibitively expensive.
Alternatively, we adopt a principled search method that is not only
generalizable to a diverse set of AIoT hardware, but can also evolve
as new hardware becomes available.

While previous methods focus on the trade-off between accuracy
and inference time, our DNN has a strict limitation on RAM and
model size. We build on top of previous NAS with learning curve
extrapolation by adding a model compilation and evaluation stage
to filter out configurations that are infeasible to run on our target
devices. The workflow of our hardware-award NAS is shown in
Figure 6, and consists of the following steps:
(1) Get a few random sample configurations from the design space

according to the computation budget.
(2) Build model according to sample configurations, export (un-

trained) model and weights, then compile the model/weights
using the AIoT compiler. Discard configurations that require
more buffer in RAM or Flash storage than AIoT hardware can
offer, or those severely underutilize hardware.
2Based on a VM with one Nvidia V100 GPU and 8 vCPU in Google Cloud:

https://cloud.google.com/compute/all-pricing

Woodstock ’18, June 03–05, 2018, Woodstock, NY Pan Hu, Junha Im, Zain Asgar, and Sachin Katti

1. Sample
Search Space

2. Model Compile
and Evaluation

3. Model
Training

4. Fit Learning
Curve Predictor

Discard LSTM Discard

5. Enumerate
Search Space

6. Model Compile
and Evaluation

7. Early Stop
Model Training
and Prediction

Discard

8. Rank Top-K
Models

9. Train Top
Models and
Select best

LSTM

Figure 6: Workflow of hardware-aware NAS with learning curve extrapolation.

Table 4: Benchmark of the Learning Curve Predictor

LSTM

Input

RMSE

Mean/STD

Accuracy

Top 5% Top 10% Top 20%

First 5 epoch 0.062/0.0076 4.8% 9.4% 20.3%

First 10 epoch 0.053/0.0077 16.4% 22.4% 28.2%

First 20 epoch 0.051/0.0084 23.2% 28.6% 32.0%

(3) Train the model on a subset of the dataset for a fixed number of
epochs or until it converges. Save training history that contains
validation loss.

(4) We fit a simple LSTM-based learning curve predictor using the
training data we’ve collected. The predictor includes only one
LSTM unit, followed by a dense layer, so the total number of
trainable parameters is only 14 (12 for LSTM, 2 for the dense
layer). We deliberately keep it simple and lightweight to avoid
over-fitting. Input to the predictor is the validation loss values
of the first a few training epochs, as shown in Figure 7. A more
detailedmini-benchmark is shown in Table 4. Experiment results
show that our predictor could achieve much better results in
selecting top configurations than random selection, while only
taking first 10 or 20 epochs as input. In this paper we take first 10
epochs as input as it could outperform random by more than 2×
in selecting top 5% configurations (16.4% v.s 5%). Taking more
epochs (e.g. 20) as input could further increase accuracy at the
cost of additional time for profiling.

(5) After fitting the predictor we enumerate the entire search space
(but reject configuration trained in previous steps).

(6) Similar to step 2, we reject configurations that over/under-utilize
the AIoT hardware.

(7) We train the remaining model on a subset of the dataset for
10 epochs and predict the final loss value using the trained
predictor.

(8) We then rank top 𝑘 model configurations according to the com-
putation budget and discard the other configurations.

(9) Train the models with these configurations on the entire dataset
until converge and save the model with the best validation loss.

3.1.2 Application-specific Codec.

Using DNNs allows us to encode content-specific information
as represented by the training dataset (i.e., content-awareness)
as well as optimizing for application goals directly (i.e., task-
awareness). Combining content-awareness and task-awareness en-
ables us to build application-specific codecs. Since training DNN

0 20 40 60 80 100
Training Epochs

0.2

0.4

0.6

0.8

Va
lid

at
io

n
Lo

ss
 V

al
ue

Visible to LSTM
Invisible to LSTM
LSTM Predict Value

Figure 7: Predict final loss value with LSTM-based learn-

ing curve predictor. Different colors indicate different DNN

configuration. The predictor takes first loss value of first

10 epochs as input. Loss values after that shown as dashed

line are invisible to the predictor. A zoom-in of the LSTM

predicted values shows we can predict final loss value accu-

rately by only look at first 10 epochs.

to be content-aware could be done rather straightforwardly us-
ing standard train/test split, we focus on how to train DNN to be
task-aware by designing appropriate loss functions.

Loss function: we train the encoder and decoder together by
minimizing L(I(𝐻,𝑊 ,𝐶) , I′ (𝐻,𝑊 ,𝐶)) where L(·) is loss function. We
utilize three major kinds of loss functions where traditional/per-
ceptual quality are optimized for human eyes and AI task objective
optimized for task accuracy:

• Traditional quality estimator: traditional estimators include
𝐿1 distance, 𝐿2 distance / PSNR, SSIM [69]/MS-SSIM [70]. We
choose MS-SSIM as representative quality estimator as it per-
forms the best [70] among them.
• Perceptual quality estimator: recent studies suggest perceptual
loss [33] that calculate metrics using DNN features to be "unrea-
sonably effective" [76] in approximating human perception. Per-
ceptual loss is defined as | |DNN(I(𝐻,𝑊 ,𝐶)),DNN(I′ (𝐻,𝑊 ,𝐶)) | |2
where DNN(·) means feature map output of perceptual DNN
with corresponding image as input. Common choices for per-
ceptual DNN include Alexnet [37] and VGG [61]. In this paper
we use the output of last layer before Softmax of VGG16 pre-
trained on Imagenet [22] to calculate perceptual loss, as it is
more powerful and up to date than Alexnet.
• AI task objective: image classification, object detection and seg-
mentation are most typical AI tasks with image as input data.
In this paper we focus on image classification, the most fun-
damental one as detection/segmentation could build on top of

Starfish: Resilient Image Compression for AIoT Cameras Woodstock ’18, June 03–05, 2018, Woodstock, NY

Original Image JPEG Compressed DNN with MSSSIM Loss DNN with VGG Loss DNN with Classification Loss

Figure 8: Visual quality comparison with different loss functions. All compressed images have a similar size of about 2.5kB.

JPEG has a lot of block artifacts while DNN optimized for objective MS-SSIM loss tends to produce a more smoothed image;

DNN optimized for perceptual quality with VGG Loss preserves details well but adding color noise; the image quality is good

even if we optimize for classification tasks, though the color of images looks strange suggesting that the classification DNN

might be less sensitive to color changes. We present numerical results in Section 5.1.

classification. We use Categorical Cross-Entropy loss for image
classification tasks:

L𝑐𝑟𝑜𝑠𝑠_𝑒𝑛𝑡𝑟𝑜𝑝𝑦 = −
𝐶∑
𝑖=1

𝑑𝑖𝑙𝑜𝑔(𝑑 ′𝑖) (3)

Where 𝑑𝑖 and 𝑑 ′
𝑖
are classification output with I(𝐻,𝑊 ,𝐶) and

I′ (𝐻,𝑊 ,𝐶)) as input respectively.
In real-world applications, we can use a weighted version of dif-

ferent loss functions if the image will be used for different purposes.
We demonstrate visual quality with different loss functions in

Figure 8. Different loss functions lead to different visual styles but
all of them are much better than JPEG of similar size. We present
numerical comparisons across different datasets in Section 5.

3.1.3 Model/IRQuantization.

Quantization of models allows more efficient DNN inference as
32-bit floating-point multiplication consumes 18×more energy and
takes 27× more silicon space to implement [28] than 8-bit integer
operation. Both K210 and Edge TPU requires INT8 quantization.

All models are trained with FP32 then quantized to INT8 with
TFLite so the model could be accelerated by AIoT accelerator. Notice
that this is different from quantizing intermediate representation
Q(·): while model quantization quantizes DNNweights into 8 bits to
accelerate computation, intermediate representation quantize into
finer bins that do not have to be an exponent of 2 (e.g. 72 bins) to save
LPWAN bandwidth. Similar to JPEG, we use Huffman [3, 31] coding
to further compress the data. Another version without Huffman
coding, which is more suitable for lossy networks is described in
section 3.2.

Notice that intermediate quantization function Q : RN → ZN is
not differentiable so we add uniform noise as described in [12, 30]
during training to simulate the effect of quantization. We can vary

0.800 0.825 0.850 0.875 0.900 0.925 0.950
MSSSIM

5000

10000

15000

Si
ze

/B
yt

es

Before Quantization
Model Quantization
Intermediate Quantization

Figure 9: Average image MS-SSIM vs. file size for model/in-

termediate quantization. There is minor SSIM loss when

quantize model with TFLite but results in a 75% smaller

file size. Quantization of intermediate representation allows

flexible size vs. MS-SSIM trade-off. It is possible to signifi-

cantly decrease the file size without significant loss in accu-

racy or compression with intermediate quantization.

the scale of noise according to the quantization step and range of
activations.

In Figure 9 we illustrate the file size and image quality for mod-
el/intermediate representation quantization. The result indicates
that model quantization with TFLite leads to minimal performance
degradation when converting the floating-point model into integer,
while compressed intermediate quantization allows for flexibility
on size vs. quality trade-off. In Starfish we select quantization
bits according to target compressed size. Visualization of image
quality with model/weights quantization is shown in Figure 10.
There is no strong visible distortion (as those in JPEG compressed
images) even after aggressive quantization.

Woodstock ’18, June 03–05, 2018, Woodstock, NY Pan Hu, Junha Im, Zain Asgar, and Sachin Katti

M
S-

SS
IM

8 bit 7 bit 6 bit 5 bit 4 bit 3 bit
Pe

rc
ep

tu
al

Cl
as

sif
ica

tio
n

Figure 10: Visual quality comparison showing the effect of intermediate representation quantization with different precision.

The first row are result of DNN trained with MS-SSIM loss, and second/third row are trained with VGG and classification loss.

Un
-a

da
pt

ed
 D

NN

Loss Rate = 0.05

DN
N

Ad
ap

te
d

to
 L

os
s

Loss Rate = 0.10 Loss Rate = 0.20 Loss Rate = 0.30 Loss Rate = 0.40

Figure 11: Visual quality comparison of DNN before (top) and after (bottom) adaption to packet loss. Both models are trained

with MS-SSIM loss. DNN with adaption is trained with packet loss rate of 0.1. Adapted DNN could mask reconstruction errors

due to packet loss and its image quality degrades more gracefully, even if the actual loss rate deviates from the trained rate.

3.2 Loss-tolerant DNN compression

In the previous section, we demonstrated that DNN in Starfish
provides graceful degradation as the numerical accuracy of com-
pressed intermediate representation decreases. We further enhance
the ability to tolerate data loss in DNN by removing Huffman
coding and train the DNN use Dropout. We simulate packet loss
during DNN training in a way similar to the Dropout layer that
randomly sets some of the weights to zero to avoid over-fitting:
B𝐿 ← B𝐿 ·M𝐿 ∈ {0, 1} whereM is a randomly generated binary
mask with the same length as the intermediate representation. The
intermediate representation is shuffled so the data loss could be
distributed over the entire image and recover with nearby data
using DNN.

There are two methods for adapting our compression DNN to
be loss-tolerant: 1) train from scratch and 2) fine-tuning based
on weights saved from un-adapted DNN. Our experiment result
indicates that fine-tuning could achieve the same performance
while using only 30% of the GPU time for training.

We visualized how data loss affects the visual quality of recon-
structed images in Figure 11. Visualization results indicate that
adapted DNN could mask data loss while un-adapted DNN suf-
fers from incorrectly reconstructed spots that are typically visually
stand out in the image. The degradation pattern of adapted DNN
due to spatial data loss is similar to those due to quantization (as
shown in Figure 10).

4 IMPLEMENTATION

Our implementation spans across three hardware platforms: Google
Cloud VMs with Nvidia V100/T4 GPU for training, Google Coral
Dev board with Edge TPU using TFLite for inference, and Kendryte
K210 AIoT platform for deployment. It takes 500+ GPU-hours
for training and evaluation with different objectives and datasets.
The training code is written in Python with TensorFlow 2.2 and
Keras [21] as the deep learning framework except for model quan-
tization with TFLite, which is done in TensorFlow 1.15 due to com-
patibility issues. Modeling training is done with Nvidia GPUs. We
export Tensorflow/Keras model to TFLite after training. TFLite

Starfish: Resilient Image Compression for AIoT Cameras Woodstock ’18, June 03–05, 2018, Woodstock, NY

Figure 12: Sample images from Stanford Cars, Caltech Birds, Tensorflow Flower and Caltech101 dataset.

cannot utilize Nvidia GPU and is not optimized for x86 CPUs so
we use Coral Dev board to speed up inference. The final trained
model is then compiled for the Kendryte K210 AIoT platform with
NNcase [5]. After flashing model to the AIoT platform, we develop
MicroPython code in MaxiPy IDE [4] for benchmarking image
capturing and DNN inference.

Image dataset: we use well-known, public datasets for our
benchmark instead of collecting a private dataset to emulate a
wide range of IoT camera applications and facilitate reproducing.
We summarize the datasets we’ve used in Table 5. Only labeled
images are used to evaluate the performance of compression that
randomly split into train/test dataset with 80%:20% ratio. We use a
data augmentation method that shift, rotate and flip training images
to avoid over-fitting. We also show some sample images from each
dataset in Figure 12. Stanford Cars, Caltech Birds and TensorFlow
Flowers are domain-specific datasets that exist similarities between
images inside the dataset while Caltech 101 is more general. We
re-sample all images into 224×224 with Lanczos algorithm [38],
which is a standard resolution for many DNN models pre-trained
on ImageNet [22].

Table 5: Summary of Image Datasets Used

Dataset Labeled Images Classes

Stanford Cars [36] 8144 196
Caltech Birds 2011 [67] 11788 200
TensorFlow Flowers [63] 3670 5

Caltech 101 [26] 9144 102

DNN training: all models are trained with Adam op-
timized with learning rate of 0.001. Implementation of
the MS-SSIM and perceptual loss are straight-forward
with TensorFlow API tf.image.ssim_multiscale and
tf.keras.application.VGG16(weights=’imagenet’,
include_top=False). The classification loss is implemented with
tf.keras.applications.ResNet50. Classification model are
pretrained on ImageNet [22] dataset and we then train them on
each dataset with categorical_crossentropy loss and obtained
an validation accuracy of 97.97%, 71.57%, 93.05% and 93.27%
for Stanford Cars, Caltech Birds 2011, TensorFlow Flowers and
Caltech101 respectively. Classifying birds is a considerably harder
task than the rest.

DNN parameters: A summary of the NAS result and DNN
properties is shown in Table 6. We believe that there is significant
headroom for optimizing AIoT compilers and the inference pipeline
as the average inference speed is only 134 MOPS when running
compression DNN, which is several orders of magnitude lower
than specified 230 GOPS theoretical speed performance of the K210

Table 6: Properties of Compression DNN

Property Result

Image Patches 4
Channels of each Conv2D Layer 64,64,64,8
Total Number of Parameters 78k
Quantized Model Size 83 KB
Total Number of Ops 126 M
Per Image Running Time on K210 0.94 second
Per Image Energy consumption 7.81 uAh

chipset. The compression DNN could be as fast as JPEG if the
average inference speed is 7.9 GOPS (so it will complete in 16ms).

5 EVALUATION

We evaluate Starfish from these perspectives for a better under-
standing of the system:
• Compressed size vs. quality. We benchmark the compressed
file size between Starfish and JPEG for various task objec-
tives, and evaluate how much do we benefit from each design
considerations.
• Resiliency to packet loss. We benchmark the performance of
Starfish in the presence of various packet loss rates.
• System-level benchmark. We present a system-level simula-
tion to evaluate how much do we benefit from Starfish in
LPWAN that has a lot of transmitting nodes.

5.1 Compressed size vs. quality

Size-quality benchmark: similar to rate-distortion curve, in Fig-
ure 13 we show the rate-quality curve with different loss func-
tions on the Stanford Cars dataset. Experimental results show that
Starfish can achieve significantly better bandwidth efficiency
when compared against JPEG: Starfish is up to 2.7× as efficient
with MS-SSIM objective, and more than 2.9× for VGG perceptual
objective and 3.0× for classification tasks.

Operation range of Starfish: We noticed that the improve-
ment gets smaller for higher quality metrics due to the limited
capacity of our DNN model; it is possible to have DNN models
with broader working range and better performance [12, 58] but
exceed the capability of AIoT hardware. Starfish could easily take
advantage of newer AIoT accelerators with its automated pipeline.
Nevertheless, we believe the current working range from less than
1KB to 3kB is a great fit for LPWAN that has very limited bandwidth
and total capacity.

In Figure 14 we benchmark Starfish on different datasets in
terms of compression efficiency with regard to JPEG. The result
indicates that Starfish significantly outperforms JPEG consis-
tently for all quality metrics across all datasets. Starfish performs

Woodstock ’18, June 03–05, 2018, Woodstock, NY Pan Hu, Junha Im, Zain Asgar, and Sachin Katti

0.80 0.85 0.90 0.95
MS-SSIM (Higher is better)

0

1000

2000

3000

4000

Co
m

pr
es

se
d

Si
ze

/B
yt

es

Optimize for MS-SSIM
JPEG
DNN

0.040.060.080.100.12
VGG Loss (Lower is better)

0

1000

2000

3000

4000

Co
m

pr
es

se
d

Si
ze

/B
yt

es

Optimize for Perceptual Quality

JPEG
DNN

0.4 0.6 0.8 1.0
Classification Accuracy (Higher is better)

0

1000

2000

3000

4000

Co
m

pr
es

se
d

Si
ze

/B
yt

es

Optimize for Classification Accuracy

JPEG
DNN

Figure 13: Size-quality benchmark for DNN in Starfish and JPEG with different optimization objectives. Compressed File

Size is the smaller the better for a given quality metric. JPEG compressed files could be up to 2.7× as large as DNN with the

same quality for MS-SSIM metric, and about 3× as large for perceptual quality and classification accuracy.

0.75 0.80 0.85 0.90 0.95
MS-SSIM (Higher is better)

1.0

1.5

2.0

2.5

Co
m

pr
es

sio
n

Ef
fic

ie
nc

y

Optimize for MS-SSIM

Cars
Flowers
Birds
Caltech101

0.040.050.060.070.08
VGG Loss (Lower is better)

1.0

1.5

2.0

2.5

3.0

Co
m

pr
es

sio
n

Ef
fic

ie
nc

y

Optimize for Perceptual Quality

Cars
Flowers
Birds
Caltech101

0.0 0.2 0.4 0.6 0.8 1.0
Classification Accuracy (Higher is better)

1

2

3

4

5

Co
m

pr
es

sio
n

Ef
fic

ie
nc

y

Optimize for Classification Accuracy

Cars
Flowers
Birds
Caltech101

Figure 14: Compression efficiency of Starfish on different datasets with different optimization goals relative to JPEG. The

compression efficiency of JPEG is defined as 1, so a compression efficiency of 2.5 means DNN uses only 40% of the bandwidth

when compared with JPEG. DNN significantly outperforms JPEG on all datasets with all optimization goals.

0.80 0.85 0.90 0.95
MS-SSIM (Higher is better)

1.25

1.50

1.75

2.00

2.25

2.50

2.75

Co
m

pr
es

sio
n

Ef
fic

ie
nc

y

Trained on Cars
Trained on Birds
Trained on Flowers
Trained on Caltech101

Figure 15: Content-aware benchmark by comparing models

trained on different datasets and evaluate on Stanford Cars

dataset. The model that train and test on the same dataset

clearly outperformsmodels trained on a different one. How-

ever, all models still outperform JPEG by wide margins.

slightly different across datasets: we achieved the lowest perfor-
mance gain on Caltech101 dataset in terms of MS-SSIM and VGG
Loss objective, as images subjects tend to be more versatile in that
dataset; we also achieved higher gain on Tensorflow Flowers dataset
for classification tasks due to the fact that there are significantly
fewer classes for that dataset.

How much do we benefit from content-aware and task-

aware: being aware of the content and task are unique advantages
of DNN over JPEG. We try to understand how much do we benefit
from that. We first benchmark the performance of DNN models
trained on different training datasets and evaluates them on the

0.040.060.080.100.120.14
VGG Loss (Lower is better)

1.0

1.5

2.0

2.5

3.0

Co
m

pr
es

sio
n

Ef
fic

ie
nc

y

VGG Loss
MS-SSIM Loss
Classification Loss

Figure 16: Task-aware benchmark by comparing models

trained with VGG/MS-SSSIM/Classification loss and evalu-

ated with perceptual quality using VGG loss. Despite the sig-

nificant shift in working region, both the max and mean ef-

ficiency drops for DNN trained with MS-SSIM and classifica-

tion loss, with efficiency degrades close or even worse than

JPEG at small VGG loss values.

Stanford cars test dataset. The result indicates that there is a signifi-
cant gap between the content-aware one that is trained on Stanford
Cars dataset and the rest. Similarly, we benchmark the performance
of DNN trained with different loss functions and evaluate them
with VGG loss (for perceptual quality). Results reveal that task-
aware DNN outperforms others in terms of max, mean, and min
compression efficiency significantly.

Time and Energy saving from DNN compression:
Starfish does not only reduce network traffic, thus making it
possible for the gateway to server more IoT cameras, but can

Starfish: Resilient Image Compression for AIoT Cameras Woodstock ’18, June 03–05, 2018, Woodstock, NY

0.800 0.825 0.850 0.875 0.900 0.925 0.950
MSSSIM Quality (Higher is Better)

1.00
1.25
1.50
1.75
2.00
2.25
2.50

Ti
m

e/
En

er
gy

 E
ffi

cie
nc

y
Good
Average
Bad

Figure 17: Time and energy efficiency of Starfish under

different link conditions. Solid lines showing time efficiency

and dashed lines show energy efficiency. Two times as effi-

cient means we need to spend only half of the time/energy

for the image when compared against JPEG.

also provide transmit time and energy savings. we calculate
time and energy saving with Starfish to better understand the
performance gain. We compare Starfish and JPEG in Figure 17.
Results suggest that we can get improve time/energy efficiency by
up to 2.5× for the link with bad condition.

5.2 Resiliency to packet loss

So far, we assume the link is reliable (using confirmed traffic in
LoRaWAN). Now let’s benchmark the performance of Starfish in
the presence of packet loss. We trained DNN with different dropout
rates from 0.05 to 0.40 and found a dropout rate of 0.1 achieves the
best compression efficiency. It even works better at a higher loss
rate than DNN trained exactly on that rate, potentially due to the
fact that DNN cannot learn well with a loss rate that is too large.

We benchmark the compression efficiency for loss resilient DNN
against JPEG assuming no packet loss in Figure 18. Results indi-
cate that could outperform JPEG over a wide range of target MSS-
SIM quality and loss rates. For example, at MSSSIM value of 0.85,
Starfish could outperform JPEG even with 20% packet loss. Com-
pression efficiency for perceptual quality and classification tasks
shows a similar pattern. DNN in Starfish exhibits graceful degra-
dation across a wide range of packet loss rates thus it is more fa-
vorable than FEC (Forward Error Correction) which needs to know
actual loss rate to determine redundancy. Nevertheless, Starfish
is also much more efficient: LoRa supports a coding rate of 4/7
which means 4 bits of data and 3 bits of parity check to correct 1 bit
of error, thus there is 75% overhead to just recover 25% data error.

5.3 System-level benchmark

The benefit of loss tolerance for a single link shown in Table 1 does
not take collision into account. However, there may have hundreds
of nodes connected to a gateway in LPWAN, and collision happens
frequently. In this section, we use LoRaSim [16] to understand how
the loss resiliency of Starfish translates into performance in
large scale deployment. We simulate 100 to 1000 transmit nodes
that are randomly placed up to 3km away from the gateway3. All

3The command we use is: "python3 loraDir.py N_nodes Interval_ms
Exp_mod=3 Sim_ms=3600000 Collision=1" where N_nodes∈ [100, 200, 500, 1000]
and Interval_ms∈ [2000, 120000] to [20000, 1200000].

0.75 0.80 0.85 0.90
MSSSIM Quality (Higher is Better)

0.8

1.0

1.2

1.4

1.6

Co
m

pr
es

sio
n

Ef
fic

ie
nc

y

0%
3%
5%
10%
15%
20%
30%
40%

Figure 18: Compression efficiency of resilient DNN in

Starfish against JPEG under different packet loss rates

ranging from 3% to 40%. Overall performance gain is lower

than non-resilient DNN as we have to remove Huffman cod-

ing. Result shows that Starfish degrades gracefully in the

presence of data loss. Starfish outperforms JPEG even un-

der heavy loss.

0 500 1000
kBytes per Hour

0.75

0.80

0.85

0.90

0.95

1.00

Da
ta

 D
el

iv
er

y
Ra

te + JPEG

Starfish +

N=100
N=200
N=500
N=1000

0 500 1000
kBytes per Hour

10

12

14

16

18

20

22

uA
h

pe
r K

By
te

+ JPEG

Starfish +

N=100
N=200
N=500
N=1000

Figure 19: Simulated LoRaWAN total throughput (left) and

energy efficiency (right) for a single gateway with 100 to

1000 IoT devices in the network. Data deliver rate drops

sharply as total traffic increases, thus tolerating data loss

brings huge throughput gain.

nodes are configured with fixed transmit power that is optimized
based on the distance to the gateway. The channel loss model is
log-distance and the path-loss exponent is set to 2.08. Aside from
simulating frequency/spreading-factor/power/timing collision, full
collision check is enabled that not only considers packets arrived
at the same time, but also includes the "capture effect" where the
relatively stronger signal could be received based on receive power
and relative timing. We run the simulation for 1 hour. We vary the
average sending interval to simulate different traffic density with
a total of 2400 different combinations. Notice that we count the
number of packets rather than emulate actual image data due to the
implementation of the simulator we used. A large-scale real-world
deployment or more authentic emulators that provide an interface
to real data would be good future directions for this work.

The simulated total throughput and energy efficiency are shown
in Figure 19. We can find the data deliver rate drops significantly
as total throughput increases due to increased collision of packets.
The throughput is only 219 KBytes per hour at 95% data delivery
rate (for JPEG) when compared with 825 kBytes per hour at 80%

Woodstock ’18, June 03–05, 2018, Woodstock, NY Pan Hu, Junha Im, Zain Asgar, and Sachin Katti

data delivery rate (for Starfish). There is significant benefit for
applications to tolerate data loss: Starfish could deliver 3.7× as
many images as JPEG does while providing better image quality,
even ignoring the additional overhead of re-transmission for the 5%
packet loss for JPEG. We only observe minor energy degradation
by sending more aggressively.

6 RELATEDWORKS AND DISCUSSION

LPWAN and DNN-based image compression are hot topics in their
respective research communities. Our work is inspired by a great
deal of previous work in DNN architecture design, error correction
in LPWAN, and IoT camera systems.

DNN for image compression: there has been significant prior
works on DNN-based image compression techniques that have
inspired our design: end-to-end optimized [12], recurrent neural
network [64], context-adaptive [39], residual coding [40], content-
weighted [41], conditional probabilitymodels [48], GAN(Generative
Adversarial Networks) [9, 13], and real-time compression on desk-
top grade GPUs [58]. However, most of them focus on reducing
compressed size except for the last one. None of them are designed
to run on AIoT accelerators with a few MB of RAM and GOPS-level
of computation power. In addition, Starfish differs from them
fundamentally by being aware of the underlying lossy wireless
link, featuring loss resiliency in the application layer. There are
works on optimizing JPEGwith DNN by learning quantization table,
color space transformation and other hyper-parameters of JPEG
codec [43, 74], but the performance gain is significantly limited by
the JPEG framework and cannot tolerate data loss.

Network architecture search: works that optimize search
speed in NAS usually falls in to four categories [24]:

(1) Learning curve extrapolation[11, 35] that extrapolate learning
curve after a few episodes of training.

(2) Lower fidelity estimates[57, 60] that training on partial or
down-sampled data.

(3) Weight inheritance[17, 23] that warm-start new models by
inheriting weights from parent model.

(4) One-shot model[18, 73] that trains only one model and use
its sub-graph to generate smaller models.

In Starfish we combine the first two methods to speed up find-
ing the best architecture as they’re easier to train and implement.
However, other methods are worth trying in future works.

Error correction for LoRaWAN: Collision and perturbation
of wireless channels cause frequent packet error. Here are recent
works on recovering error for LPWAN: DaRe [46] is an application
layer coding that recovers data from redundancy and outperforms
repetition coding by 21% percentage; NScale [65] tries to resolve
concurrent transmission leveraging subtle inter-packet time off-
sets; FTrack[72] uses a parallel decoding method to decode con-
current LoRa symbols. Starfish could benefit from these works
as combining them would allow more aggressive bitrate and more
concurrent transmission leading to higher energy efficiency and
overall network capacity. Whereas, Starfish provides an alterna-
tive approach for error correction, featuring loss resiliency in the
application layer and provides more significant performance gain.

Distributed inference: instead of sending images to the cloud,
distributed inference provides an alternative solution by splitting

DNN inference between the edge and cloud [20, 25, 47]. However,
these methods are not designed for application scenarios where
human-readable images are required for additional verification or
the data should be re-purposed for other AI tasks. Also distributed
inference tends to put more pressure on the network side, which is
not desired in LPWAN.

Future works: we believe DNN is an especially powerful tool
when combined with domain knowledge, and our work is just
the beginning for a wide range of cross-layer, application-specific
network stacks that achieve better capacity and computation/com-
munication trade-off:
• More efficient DNN design with novel architecture. We believe the
performance of DNN in Starfish could be further improved
with the state-of-the-art residual and recurrent architecture if
AIoT compiler and hardware supports them, which may happen
in the near furture as AIoT hardware is evolving at an extremely
fast pace. Another direction of research would be more aggres-
sive quantization like XNORNet [56] or Dorefa-net [78] with
customized implementation on FPGA devices to further push
the limit of energy consumption.
• Coordination across AIoT cameras [32, 42]. Physically proximate
cameras might see similar images and information/computation
could be shared between them with less overhead than over
a long-range link between cameras and gateway. With intelli-
gent coordination, cameras could process more data locally that
increases the battery life of AIoT cameras and network capacity.
• DNN-based video streaming for AIoT cameras. Recent works [19,
45, 59] show promising results on compressing videos with DNN
and some of them have outperformed popular video encoding
standards like H.264/H.265. Though these methods require mas-
sive computation power (2fps@640×480 resolution on Nvidia
V100 GPU) or only work for extremely low resolution (32×32),
we believe certain application like stationary cameras could ben-
efit from this work as there is a lot of similarity across frames.

7 CONCLUSION

To sum up, we propose Starfish, a DNN-based image compression
framework for AIoT cameras connected by LPWAN that has lim-
ited capacity. Starfish features two key insights: firstly, solving
data loss in the application layer could replace the need for reliable
transmissions, thus brings drastic performance gain and simplifies
the design of network stack; secondly, codecs can benefit from be-
ing content-aware and task-aware in IoT settings that have fixed
task objective and less variation in image contents. We carefully
design and implement Starfish on low-cost AIoT accelerators
with strict resource constraints. Experiment results indicate that
Starfish achieves significant (up to 2∼4×) performance gain over
JPEG based solutions in terms of compression, time, and energy ef-
ficiency. Simulation of large-scale LoRa network also demonstrates
the power of loss resiliency in Starfish by sending 3.7× as many
images over the network.

ACKNOWLEDGMENTS

We thank the anonymous shepherd and reviewers for their insight-
ful comments.

Starfish: Resilient Image Compression for AIoT Cameras Woodstock ’18, June 03–05, 2018, Woodstock, NY

REFERENCES

[1] [n.d.]. Better Portable Graphics. https://bellard.org/bpg/.
[2] [n.d.]. Building a new future: Transforming Australia’s construction industry

with digital technologies. https://customers.microsoft.com/en-us/story/pcl-
construction-professional-services-azure

[3] [n.d.]. dahuffman. https://github.com/soxofaan/dahuffman.
[4] [n.d.]. Maxipy. https://maixpy.sipeed.com/en/get_started/maixpyide.html.
[5] [n.d.]. NNCase compiler. https://github.com/kendryte/nncase.
[6] [n.d.]. Perceptual JPEG encoder. https://github.com/google/guetzli.
[7] [n.d.]. TensorFlow Lite Micro Magic Wand example. https://github.com/

tensorflow/tensorflow/tree/master/tensorflow/lite/micro/examples/magic_
wand.

[8] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey
Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al.
2016. Tensorflow: A system for large-scale machine learning. In 12th {USENIX}
Symposium on Operating Systems Design and Implementation ({OSDI} 16). 265–
283.

[9] Eirikur Agustsson, Michael Tschannen, Fabian Mentzer, Radu Timofte, and
Luc Van Gool. 2019. Generative adversarial networks for extreme learned image
compression. In Proceedings of the IEEE International Conference on Computer
Vision. 221–231.

[10] Ganesh Ananthanarayanan, Paramvir Bahl, Peter Bodík, Krishna Chintalapudi,
Matthai Philipose, Lenin Ravindranath, and Sudipta Sinha. 2017. Real-time video
analytics: The killer app for edge computing. computer 50, 10 (2017), 58–67.

[11] Bowen Baker, Otkrist Gupta, Nikhil Naik, and Ramesh Raskar. 2016. Design-
ing neural network architectures using reinforcement learning. arXiv preprint
arXiv:1611.02167 (2016).

[12] Johannes Ballé, Valero Laparra, and Eero P Simoncelli. 2016. End-to-end optimized
image compression. arXiv preprint arXiv:1611.01704 (2016).

[13] Johannes Ballé, David Minnen, Saurabh Singh, Sung Jin Hwang, and Nick John-
ston. 2018. Variational image compression with a scale hyperprior. arXiv preprint
arXiv:1802.01436 (2018).

[14] Jim Bankoski, Paul Wilkins, and Yaowu Xu. 2011. Technical overview of VP8, an
open source video codec for the web. In 2011 IEEE International Conference on
Multimedia and Expo. IEEE, 1–6.

[15] Carsten Bockelmann, Nuno Pratas, Hosein Nikopour, Kelvin Au, Tommy Svens-
son, Cedomir Stefanovic, Petar Popovski, and Armin Dekorsy. 2016. Massive
machine-type communications in 5G: Physical and MAC-layer solutions. IEEE
Communications Magazine 54, 9 (2016), 59–65.

[16] Martin C Bor, Utz Roedig, Thiemo Voigt, and Juan M Alonso. 2016. Do LoRa low-
power wide-area networks scale?. In Proceedings of the 19th ACM International
Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems.
59–67.

[17] Han Cai, Tianyao Chen, Weinan Zhang, Yong Yu, and Jun Wang. 2018. Efficient
architecture search by network transformation. In Thirty-Second AAAI conference
on artificial intelligence.

[18] Han Cai, Ligeng Zhu, and Song Han. 2018. Proxylessnas: Direct neural archi-
tecture search on target task and hardware. arXiv preprint arXiv:1812.00332
(2018).

[19] Tong Chen, Haojie Liu, Qiu Shen, Tao Yue, Xun Cao, and Zhan Ma. 2017. Deep-
coder: A deep neural network based video compression. In 2017 IEEE Visual
Communications and Image Processing (VCIP). IEEE, 1–4.

[20] Sandeep P Chinchali, Eyal Cidon, Evgenya Pergament, Tianshu Chu, and Sachin
Katti. 2018. Neural networks meet physical networks: Distributed inference
between edge devices and the cloud. In Proceedings of the 17th ACM Workshop on
Hot Topics in Networks. 50–56.

[21] François Chollet et al. 2015. Keras. https://keras.io.
[22] Jia Deng,Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Imagenet:

A large-scale hierarchical image database. In 2009 IEEE conference on computer
vision and pattern recognition. Ieee, 248–255.

[23] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. 2018. Efficient multi-
objective neural architecture search via lamarckian evolution. arXiv preprint
arXiv:1804.09081 (2018).

[24] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. 2018. Neural architecture
search: A survey. arXiv preprint arXiv:1808.05377 (2018).

[25] John Emmons, Sadjad Fouladi, Ganesh Ananthanarayanan, Shivaram Venkatara-
man, Silvio Savarese, and Keith Winstein. 2019. Cracking open the DNN black-
box: Video Analytics with DNNs across the Camera-Cloud Boundary. In Proceed-
ings of the 2019 Workshop on Hot Topics in Video Analytics and Intelligent Edges.
27–32.

[26] Li Fei-Fei, Rob Fergus, and Pietro Perona. 2004. Learning Generative Visual
Models from Few Training Examples: An Incremental Bayesian Approach Tested
on 101 Object Categories. Computer Vision and Pattern Recognition Workshop
(2004).

[27] Branden Ghena, Joshua Adkins, Longfei Shangguan, Kyle Jamieson, Philip Levis,
and Prabal Dutta. 2019. Challenge: Unlicensed LPWANs Are Not Yet the Path to
Ubiquitous Connectivity. In The 25th Annual International Conference on Mobile
Computing and Networking. 1–12.

[28] Mark Horowitz. 2014. 1.1 computing’s energy problem (and what we can do about
it). In 2014 IEEE International Solid-State Circuits Conference Digest of Technical
Papers (ISSCC). IEEE, 10–14.

[29] Pan Hu, Rakesh Misra, and Sachin Katti. 2019. Dejavu: Enhancing Videoconfer-
encing with Prior Knowledge. In Proceedings of the 20th International Workshop
on Mobile Computing Systems and Applications. 63–68.

[30] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua
Bengio. 2017. Quantized neural networks: Training neural networks with low
precision weights and activations. The Journal of Machine Learning Research 18,
1 (2017), 6869–6898.

[31] David A Huffman. 1952. A method for the construction of minimum-redundancy
codes. Proceedings of the IRE 40, 9 (1952), 1098–1101.

[32] Junchen Jiang, Yuhao Zhou, Ganesh Ananthanarayanan, Yuanchao Shu, and
Andrew A Chien. 2019. Networked Cameras Are the New Big Data Clusters. In
Proceedings of the 2019 Workshop on Hot Topics in Video Analytics and Intelligent
Edges. 1–7.

[33] Justin Johnson, Alexandre Alahi, and Li Fei-Fei. 2016. Perceptual losses for real-
time style transfer and super-resolution. In European conference on computer
vision. Springer, 694–711.

[34] Giannis Kazdaridis, Stratos Keranidis, Polychronis Symeonidis, Panagiotis Tzimo-
toudis, Ioannis Zographopoulos, Panagiotis Skrimponis, and Thanasis Korakis.
2019. Evaluation of lora performance in a city-wide testbed: Experimentation in-
sights and findings. In Proceedings of the 13th International Workshop on Wireless
Network Testbeds, Experimental Evaluation & Characterization. 29–36.

[35] Aaron Klein, Stefan Falkner, Jost Tobias Springenberg, and Frank Hutter. 2016.
Learning curve prediction with Bayesian neural networks. (2016).

[36] Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 2013. 3D Object Repre-
sentations for Fine-Grained Categorization. In 4th International IEEE Workshop
on 3D Representation and Recognition (3dRR-13). Sydney, Australia.

[37] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet classifica-
tion with deep convolutional neural networks. In Advances in neural information
processing systems. 1097–1105.

[38] Cornelius Lanczos. 1950. An iteration method for the solution of the eigenvalue
problem of linear differential and integral operators. United States Governm. Press
Office Los Angeles, CA.

[39] Jooyoung Lee, Seunghyun Cho, and Seung-Kwon Beack. 2018. Context-adaptive
entropy model for end-to-end optimized image compression. arXiv preprint
arXiv:1809.10452 (2018).

[40] Wei-Cheng Lee, David Alexandre, Chih-Peng Chang, Wen-Hsiao Peng, Cheng-
Yen Yang, and Hsueh-Ming Hang. 2019. Learned Image Compression with Resid-
ual Coding. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition Workshops. 0–0.

[41] Mu Li, Wangmeng Zuo, Shuhang Gu, Debin Zhao, and David Zhang. 2018. Learn-
ing convolutional networks for content-weighted image compression. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition. 3214–
3223.

[42] Xiaochen Liu, Pradipta Ghosh, Oytun Ulutan, BS Manjunath, Kevin Chan, and
Ramesh Govindan. 2019. Caesar: cross-camera complex activity recognition.
In Proceedings of the 17th Conference on Embedded Networked Sensor Systems.
232–244.

[43] Zihao Liu, Tao Liu, Wujie Wen, Lei Jiang, Jie Xu, Yanzhi Wang, and Gang Quan.
2018. DeepN-JPEG: a deep neural network favorable JPEG-based image compres-
sion framework. In Proceedings of the 55th Annual Design Automation Conference.
1–6.

[44] Franz Loewenherz, Victor Bahl, and Yinhai Wang. 2017. Video analytics towards
vision zero. Institute of Transportation Engineers. ITE Journal 87, 3 (2017), 25.

[45] Guo Lu, Wanli Ouyang, Dong Xu, Xiaoyun Zhang, Chunlei Cai, and Zhiyong Gao.
2019. Dvc: An end-to-end deep video compression framework. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition. 11006–11015.

[46] Paul J Marcelis, Vijay S Rao, and R Venkatesha Prasad. 2017. DaRe: Data recov-
ery through application layer coding for LoRaWAN. In 2017 IEEE/ACM Second
International Conference on Internet-of-Things Design and Implementation (IoTDI).
IEEE, 97–108.

[47] Yoshitomo Matsubara, Sabur Baidya, Davide Callegaro, Marco Levorato, and
Sameer Singh. 2019. Distilled Split Deep Neural Networks for Edge-Assisted
Real-Time Systems. In Proceedings of the 2019 Workshop on Hot Topics in Video
Analytics and Intelligent Edges. 21–26.

[48] Fabian Mentzer, Eirikur Agustsson, Michael Tschannen, Radu Timofte, and Luc
Van Gool. 2018. Conditional probability models for deep image compression. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
4394–4402.

[49] Robert Moriarty, Kathy O’Connell, Nicolaas Smit, Andy Noronha, and Joel Barbier.
2015. A New Reality for Oil and Gas.

[50] Vinod Nair and Geoffrey E Hinton. 2010. Rectified linear units improve re-
stricted boltzmann machines. In Proceedings of the 27th international conference
on machine learning (ICML-10). 807–814.

[51] Shadi A Noghabi, Landon Cox, Sharad Agarwal, and Ganesh Ananthanarayanan.
2020. THE EMERGING LANDSCAPE OF EDGE COMPUTING. GetMobile: Mobile

https://bellard.org/bpg/
https://customers.microsoft.com/en-us/story/pcl-construction-professional-services-azure
https://customers.microsoft.com/en-us/story/pcl-construction-professional-services-azure
https://github.com/soxofaan/dahuffman
https://maixpy.sipeed.com/en/get_started/maixpyide.html
https://github.com/kendryte/nncase
https://github.com/google/guetzli
https://github.com/tensorflow/tensorflow/tree/master/ tensorflow/lite/micro/examples/magic_wand
https://github.com/tensorflow/tensorflow/tree/master/ tensorflow/lite/micro/examples/magic_wand
https://github.com/tensorflow/tensorflow/tree/master/ tensorflow/lite/micro/examples/magic_wand
https://keras.io

Woodstock ’18, June 03–05, 2018, Woodstock, NY Pan Hu, Junha Im, Zain Asgar, and Sachin Katti

Computing and Communications 23, 4 (2020), 11–20.
[52] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang,

Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer.
2017. Automatic differentiation in pytorch. (2017).

[53] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al.
2019. PyTorch: An imperative style, high-performance deep learning library. In
Advances in Neural Information Processing Systems. 8024–8035.

[54] Juha Petäjäjärvi, Konstantin Mikhaylov, Rumana Yasmin, Matti Hämäläinen, and
Jari Iinatti. 2017. Evaluation of LoRa LPWAN technology for indoor remote
health and wellbeing monitoring. International Journal of Wireless Information
Networks 24, 2 (2017), 153–165.

[55] Majid Rabbani. 2002. JPEG2000: Image compression fundamentals, standards
and practice. Journal of Electronic Imaging 11, 2 (2002), 286.

[56] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. 2016.
Xnor-net: Imagenet classification using binary convolutional neural networks.
In European conference on computer vision. Springer, 525–542.

[57] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V Le. 2019. Regularized
evolution for image classifier architecture search. In Proceedings of the aaai
conference on artificial intelligence, Vol. 33. 4780–4789.

[58] Oren Rippel and Lubomir Bourdev. 2017. Real-time adaptive image compression.
In Proceedings of the 34th International Conference on Machine Learning-Volume
70. JMLR. org, 2922–2930.

[59] Oren Rippel, Sanjay Nair, Carissa Lew, Steve Branson, Alexander G Anderson,
and Lubomir Bourdev. 2019. Learned video compression. In Proceedings of the
IEEE International Conference on Computer Vision. 3454–3463.

[60] Frederic Runge, Danny Stoll, Stefan Falkner, and Frank Hutter. 2018. Learning to
design RNA. arXiv preprint arXiv:1812.11951 (2018).

[61] Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional networks
for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014).

[62] Jothi Prasanna Shanmuga Sundaram, Wan Du, and Zhiwei Zhao. 2019. A survey
on lora networking: Research problems, current solutions, and open issues. IEEE
Communications Surveys & Tutorials 22, 1 (2019), 371–388.

[63] The TensorFlow Team. 2019. Flowers. http://download.tensorflow.org/example_
images/flower_photos.tgz

[64] George Toderici, Damien Vincent, Nick Johnston, Sung Jin Hwang, DavidMinnen,
Joel Shor, and Michele Covell. 2017. Full resolution image compression with
recurrent neural networks. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 5306–5314.

[65] Shuai Tong, Jiliang Wang, and Yunhao Liu. 2020. Combating packet collisions
using non-stationary signal scaling in LPWANs. In Proceedings of the 18th Inter-
national Conference on Mobile Systems, Applications, and Services. 234–246.

[66] Deepak Vasisht, Zerina Kapetanovic, Jongho Won, Xinxin Jin, Ranveer Chandra,
Sudipta Sinha, Ashish Kapoor, Madhusudhan Sudarshan, and Sean Stratman.
2017. Farmbeats: An iot platform for data-driven agriculture. In 14th {USENIX}
Symposium on Networked Systems Design and Implementation ({NSDI} 17). 515–
529.

[67] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie. 2011. The Caltech-
UCSD Birds-200-2011 Dataset. Technical Report CNS-TR-2011-001. California
Institute of Technology.

[68] Gregory K Wallace. 1992. The JPEG still picture compression standard. IEEE
transactions on consumer electronics 38, 1 (1992), xviii–xxxiv.

[69] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. 2004. Image
quality assessment: from error visibility to structural similarity. IEEE transactions
on image processing 13, 4 (2004), 600–612.

[70] ZhouWang, Eero P Simoncelli, and Alan C Bovik. 2003. Multiscale structural sim-
ilarity for image quality assessment. In The Thrity-Seventh Asilomar Conference
on Signals, Systems & Computers, 2003, Vol. 2. Ieee, 1398–1402.

[71] Thomas Wiegand, Gary J Sullivan, Gisle Bjontegaard, and Ajay Luthra. 2003.
Overview of the H. 264/AVC video coding standard. IEEE Transactions on circuits
and systems for video technology 13, 7 (2003), 560–576.

[72] Xianjin Xia, Yuanqing Zheng, and Tao Gu. 2019. FTrack: Parallel decoding for
LoRa transmissions. In Proceedings of the 17th Conference on Embedded Networked
Sensor Systems. 192–204.

[73] Sirui Xie, Hehui Zheng, Chunxiao Liu, and Liang Lin. 2018. SNAS: stochastic
neural architecture search. arXiv preprint arXiv:1812.09926 (2018).

[74] Xiufeng Xie and Kyu-Han Kim. 2019. Source Compression with Bounded DNN
Perception Loss for IoT Edge Computer Vision. In The 25th Annual International
Conference on Mobile Computing and Networking. 1–16.

[75] Asif M Yousuf, Edward M Rochester, Behnam Ousat, and Majid Ghaderi. 2018.
Throughput, coverage and scalability of LoRa LPWAN for internet of things. In
2018 IEEE/ACM 26th International Symposium on Quality of Service (IWQoS). IEEE,
1–10.

[76] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang.
2018. The unreasonable effectiveness of deep features as a perceptual metric. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
586–595.

[77] Yundong Zhang, Naveen Suda, Liangzhen Lai, and Vikas Chandra. 2017. Hello
edge: Keyword spotting on microcontrollers. arXiv preprint arXiv:1711.07128
(2017).

[78] Shuchang Zhou, Yuxin Wu, Zekun Ni, Xinyu Zhou, He Wen, and Yuheng Zou.
2016. Dorefa-net: Training low bitwidth convolutional neural networks with low
bitwidth gradients. arXiv preprint arXiv:1606.06160 (2016).

http://download.tensorflow.org/example_images/flower_photos.tgz
http://download.tensorflow.org/example_images/flower_photos.tgz

	Abstract
	1 Introduction
	2 Background and Motivation
	3 System Design
	3.1 Design of Compression DNN
	3.2 Loss-tolerant DNN compression

	4 Implementation
	5 Evaluation
	5.1 Compressed size vs. quality
	5.2 Resiliency to packet loss
	5.3 System-level benchmark

	6 Related Works and Discussion
	7 Conclusion
	Acknowledgments
	References

